

YouChoose, WeDoIt
St.JOSEPH'S COLLEGE OF ENGINEERING
(AnAutonomousInstitution)

St. Joseph's Group of Institutions

Jeppiaar Educational Trust

OMR, Chennai-119. REGULATIONS 2021

B. TECH. CHEMICAL ENGINEERING CHOICE BASED CREDIT SYSTEM

1. Programme Educational Objectives (PEOs)

Graduates of B. Tech. Chemical Engineering will

- a) Apply principles of mathematics, science, and engineering to analyze and solve problems encountered in chemical engineering and related areas.
- b) Think critically and creatively, especially about the use of technology to address local and global problems and become a socially responsible engineer by involving with community and professional organizations.
- c) Exhibit professional, ethical codes of conduct, team work and continuous learning for catering the ever changing needs of the society.

2. Programme Outcomes (POs)

On successful completion of the B. Tech. Chemical Engineering programme,

- 1. Engineering Knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution complex engineering problems.
- 2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.
- **3.** Design/development of solutions: Design solutions for complex engineering problems and design system components or process that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal and environmental considerations.
- 4. Conduct investigations of complex problems: Use research based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to proceed valid conclusions.
- 5. Modern tool usage: create, select and apply appropriate techniques, resources and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

- 6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of and need for sustainable development.
- **8.** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **9.** Individual and team work: Function effectively as an individual and as a member or leader in diverse teams, and in multidisciplinary settings.
- **10.** Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **12.** Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

3. <u>PEOs / POs Mapping</u>

PEOs /POs	1	2	3	4	5	6	7	8	9	10	11	12
а			\checkmark									\checkmark
b						\checkmark					\checkmark	
c												

4. <u>Semester Course wise POs Mapping</u>

			-	3	4	5	6	7	8	9	10	11	12
	Communicative English						\checkmark	\checkmark					\checkmark
	Engineering Mathematics – I	\checkmark				\checkmark							
-	Engineering Physics	\checkmark											
LER E	Engineering Chemistry	\checkmark											
ESI	Problem solving and Python Programming	\checkmark			\checkmark								
M	Engineering Graphics	\checkmark			\checkmark								
S	Problem solving and Python Programming												
-	•			2			-			-	2		
	Filysics and Chemistry Laboratory	V		N							N		
	SEMESTERI	Engineering Physics Engineering Chemistry Problem solving and Python Programming Engineering Graphics	Engineering Physics√Engineering Chemistry√Problem solving and Python Programming√Engineering Graphics√Problem solving and Python Programming√Laboratory√	Engineering Physics $$ Engineering Chemistry $$ Problem solving and Python Programming $$ Engineering Graphics $$ Problem solving and Python Programming $$ Laboratory $$	Engineering Physics $$ Engineering Chemistry $$ Problem solving and Python Programming $$ Engineering Graphics $$ Problem solving and Python Programming $$ Laboratory $$	Engineering Physics $$ Engineering Chemistry $$ Problem solving and Python Programming $$ $$ $$ Engineering Graphics $$ $$ $$ Problem solving and Python Programming $$ <t< td=""><td>Engineering Physics$$$$Engineering Chemistry$$$$Problem solving and Python Programming$$$$Engineering Graphics$$$$Problem solving and Python Programming$$$$Problem solving and Python Programming$$$$</td><td>Engineering Physics$$$$Engineering Chemistry$$$$Problem solving and Python Programming$$$$Engineering Graphics$$$$Problem solving and Python Programming$$$$Laboratory$$$$</td><td>Engineering Physics$$$$Engineering Chemistry$$$$Problem solving and Python Programming$$$$Engineering Graphics$$$$Problem solving and Python Programming$$$$V$$$$V$$$$V$$$$V$$$$V$$$$V$$$$V$$$$V$$$$</td><td>Engineering Physics$$$$Engineering Chemistry$$$$Problem solving and Python Programming$$$$Engineering Graphics$$$$Problem solving and Python Programming$$$$Uptoblem solving and Python Programming$$$$V$$$$V$$$$V$$$$V$$$$V$$$$V$$$$V$$$$</td><td>Engineering Physics$$$$$$Engineering Chemistry$$$$$$Problem solving and Python Programming$$$$$$Engineering Graphics$$$$$$Problem solving and Python Programming$$$$$$Problem solving and Python Programming$$$$$$$$$$$$$$$$</td><td>Engineering Physics$$$$$$Engineering Chemistry$$$$$$Problem solving and Python Programming$$$$Engineering Graphics$$$$Problem solving and Python Programming$$<!--</td--><td>Engineering Physics$$$$$$Engineering Chemistry$$$$$$Problem solving and Python Programming$$$$Engineering Graphics$$$$Problem solving and Python Programming$$<!--</td--></td></td></t<>	Engineering Physics $$ $$ Engineering Chemistry $$ $$ Problem solving and Python Programming $$ $$ Engineering Graphics $$ $$ Problem solving and Python Programming $$ $$ Problem solving and Python Programming $$ $$	Engineering Physics $$ $$ Engineering Chemistry $$ $$ Problem solving and Python Programming $$ $$ Engineering Graphics $$ $$ Problem solving and Python Programming $$ $$ Laboratory $$ $$	Engineering Physics $$ $$ Engineering Chemistry $$ $$ Problem solving and Python Programming $$ $$ Engineering Graphics $$ $$ Problem solving and Python Programming $$ $$ V $$ $$	Engineering Physics $$ $$ Engineering Chemistry $$ $$ Problem solving and Python Programming $$ $$ Engineering Graphics $$ $$ Problem solving and Python Programming $$ $$ Uptoblem solving and Python Programming $$ $$ V $$ $$	Engineering Physics $$ $$ $$ Engineering Chemistry $$ $$ $$ Problem solving and Python Programming $$ $$ $$ Engineering Graphics $$ $$ $$ Problem solving and Python Programming $$ $$ $$ Problem solving and Python Programming $$ $$ $$ $$ $$ $$ $$ $$	Engineering Physics $$ $$ $$ Engineering Chemistry $$ $$ $$ Problem solving and Python Programming $$ $$ Engineering Graphics $$ $$ Problem solving and Python Programming $$ </td <td>Engineering Physics$$$$$$Engineering Chemistry$$$$$$Problem solving and Python Programming$$$$Engineering Graphics$$$$Problem solving and Python Programming$$<!--</td--></td>	Engineering Physics $$ $$ $$ Engineering Chemistry $$ $$ $$ Problem solving and Python Programming $$ $$ Engineering Graphics $$ $$ Problem solving and Python Programming $$ </td

		Professional English										\checkmark		
	R	Engineering Mathematics – II												
	SEMESTER	Physics of Materials												
	ES	Environmental Science and Engineering												
	N	Basic Civil and Mechanical Engineering												
	S	Introduction to Chemical Engineering												
		Engineering Practices Laboratory												
		Technical Analysis Laboratory												
		Applied numerical analysis												
	_	Process Calculations												
	RI	Fluid Mechanics for chemical Engineers												
	SEMESTER	Principles of electrical and electronics engineering	\checkmark		\checkmark			\checkmark						
	M	Solid Mechanics for technologists												
	S	Fluid Mechanics Laboratory												
		Electrical Engineering Laboratory												
ır II		1	1	L	L	1	L	I	I	L	L	1	1	1
Year		Applied probability and statistics												1
		Chemistry for chemical Engineers					,							
	R IV	Computer applications in Chemical Engineering (Integrated Lab)							,			,	\checkmark	
	Π	Mechanical operations												
	ES	Chemical Process Industries												
	SEMESTER	Instrumental Methods Of Chemical Analysis												
	S	Mechanical operations Laboratory												
		Professional Skills Laboratory												
	/	Chemical Reaction Engineering I												1
	R V	Heat Transfer												
	STE	Mass Transfer I												
	UES	Heat and mass Transfer Laboratory												
	SEMESTER	Computational Programming Laboratory for Chemical Engineers												
Year III				1						1	1	1		
Ye		Chemical Reaction Engineering II												
	5	Mass Transfer II (Integrated Laboratory)												
	SEMESTER	Chemical Engineering Thermodynamics												\checkmark
	ST	Process Dynamics and Control												
	ME	Process Economics and Industrial Management				,								
	SE	Professional Ethical Practice		<u> </u>							<u> </u>		,	<u> </u>
		Chemical Reaction Engineering Laboratory						V						
	5	Transport Phenomena												<u> </u>
Year IV	SEMESTER VII	Chemical Process Equipment Design (Integrated Lab)	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark			
ŕea	ES	Industrial Safety												<u> </u>
	Σ Ш	Mini Project												
	S	Process Control and dynamics Laboratory												

	Internship	\checkmark	\checkmark						
_	Project Work	\checkmark	\checkmark		\checkmark		\checkmark		
2									
Щ									
ST									

REGULATIONS 2021

B. TECH. CHEMICAL ENGINEERING - CHOICE BASED CREDIT SYSTEM I TO VIII SEMESTERS (FULL TIME) CURRICULA AND SYLLABI

	SEMESTER I										
		THEORY									
S	SUB	COURSE TITLE	L	Т	Р	Η	С	CATEGORY			
No	CODE										
1	HS1101	Communicative English	3	0	0	3	3	HSMC			
2	MA1102	Engineering Mathematics – I	4	0	0	4	4	BSC			
3	PH1103	Engineering Physics	3	0	0	3	3	BSC			
4	CY1104	Engineering Chemistry	3	0	0	3	3	BSC			
5	GE1105	Problem solving and Python	3	0	0	3	3	ESC			
	OL1105	Programming	5	0	0	5	5	Loc			
6	GE1106	Engineering Graphics	2	0	4	6	4	ESC			
7	GE1209	Heritage of Tamils	1	0	0	1	1	HSMC			
	TC	OTAL CREDITS FOR THEORY	19	0	4	23	21				
		LABORATORY									
8	GE1107	Problem Solving and Python	0	0	4	4	2	ESC			
	OLII0/	Programming Laboratory	0	0	Ť	t	2				
9	BS1108	Physics and Chemistry Laboratory	0	0	4	4	2	BSC			
		TOTAL CREDITS FOR LAB	0	0	8	8	4				
		SEMESTER TOTAL	19	0	12	31	25				
	((THEORY + LABORATORY)									

SEMESTER II

		THEORY						
S	SUB	COURSE TITLE	L	Т	Р	Η	С	CATEGORY
No	CODE							
1	HS1201	Professional English	3	0	0	3	3	HSMC
2	MA1202	Engineering Mathematics – II	4	0	0	4	4	BSC
3	PH1255	Physics of Materials	3	0	0	3	3	BSC
4	GE1204	Environmental Science and Engineering	3	0	0	3	3	HSMC
5		Basic Civil and Mechanical Engineering	3	0	0	3	3	ESC
	GE1205							
6	CH1206	Introduction to Chemical Engineering	3	0	0	3	2	PCC
7	GE1210	Tamils and Technology	1	0	0	1	1	HSMC
	TO	TAL CREDITS FOR THEORY	20	0	0	20	19	
		LABORATORY						
8	GE1207	Engineering Practices Laboratory	0	0	4	4	2	ESC
9	CH1208	Technical Analysis Laboratory	0	0	4	4	2	BSC
	r	TOTAL CREDITS FOR LAB	0	0	8	8	4	
		SEMESTER TOTAL	20	0	8	28	23	
	(THEORY + LABORATORY)						

SEMESTER III

		THEORY						
S	SUB	COURSE TITLE	L	Т	Р	Η	С	CATEGORY
No	CODE							
1	MA1353	Applied numerical analysis	4	0	0	4	4	BSC
2	CH1301	Process Calculations	3	1	0	4	4	PCC
3	CH1302	Fluid Mechanics for chemical Engineers	3	0	0	3	3	PCC
4	EE1353	Principles of electrical and electronics engineering	3	0	0	3	3	ESC
5	CH1303	Solid Mechanics for technologists	3	0	0	3	3	ESC
	TOTA	AL CREDITS FOR THEORY	16	1	0	17	17	
6	CH1307	Fluid Mechanics Laboratory	0	0	3	3	2	PCC
7	EE1358	Electrical Engineering Laboratory	0	0	3	3	2	ESC
	TO	TAL CREDITS FOR LAB	0	0	6	6	4	
	(TH	SEMESTER TOTAL IEORY + LABORATORY)	16	1	6	23	21	

SEMESTER IV

S	SUB	COURSE TITLE	L	Т	Р	Η	C	CATEGORY			
No	CODE										
1	MA1452	Applied probability and statistics	4	0	0	4	4	BSC			
2	CH1401	Chemistry for chemical Engineers	3	0	0	3	3	BSC			
3	CH1402	Computer applications in Chemical	3	0	2	5	4	PCC			
		Engineering (Integrated Lab)									
4	CH1403	Mechanical operations	3	0	0	3	3	PCC			
5	CH1404	Chemical Process Industries	3	0	0	3	3	PCC			
6	CH1405	Instrumental Methods of Chemical	3	0	0	3	3	BSC			
		Analysis									
	TC	OTAL CREDITS FOR THEORY	19	0	2	21	20				
		LABORATORY									
7	CH1407	Mechanical operations Laboratory	0	0	3	3	2	PCC			
8	HS1310	Professional Skills Laboratory	0	0	2	2	1	EEC			
		TOTAL CREDITS FOR LAB	0	0	5	5	3				
		SEMESTER TOTAL	19	0	7	26	23				
		(THEORY + LABORATORY)									

SEMESTER V

	THEORY									
S	SUB	COURSE TITLE	L	Т	Р	Η	С	CATEGORY		
No	CODE									
1	CH1501	Chemical Reaction Engineering I	3	0	0	3	3	PCC		
2	CH1502	Heat Transfer	3	0	0	3	3	PCC		
3	CH1503	Mass Transfer I	3	0	0	3	3	PCC		
4		Professional Elective I	3	0	0	3	3	PEC		
5		Open Elective I	3	0	0	3	3	OEC		
6		Audit course *(one from the list of audit	2	0	0	2	0	AC		
		courses)								
	,	TOTAL CREDITS FOR THEORY	17	0	0	17	15			
		LABORATORY								
7	CH1507	Heat and mass Transfer Laboratory	0	0	3	3	2	PCC		
8	CH1508	Computational Programming Laboratory for	0	0	3	3	2	PCC		
		Chemical Engineers								
		TOTAL CREDITS FOR LAB	0	0	6	6	4			
		SEMESTER TOTAL	17	0	6	23	19			
		(THEORY + LABORATORY)								

SEMESTER VI

	THEORY									
S No	SUB CODE	COURSE TITLE	L	Т	Р	Н	С	CATEGORY		
1	CH1601	Chemical Reaction Engineering II	3	1	0	4	4	PCC		
2	CH1602	Mass Transfer II (Integrated Laboratory)	3	0	2	4	4	PCC		
3	CH1603	Chemical Engineering Thermodynamics	3	0	0	3	3	PCC		
4	CH1604	Process Dynamics and Control	3	0	0	3	3	PCC		
5	CH1605	Process Economics and Industrial	3	0	0	3	3	PCC		
		Management								
6		Professional Elective II	3	0	0	3	3	PEC		
	ТО	TAL CREDITS FOR THEORY	18	1	2	20	20			
		LABORATORY								
7	CH1607	Professional Ethical Practice	0	0	3	3	1	PCC		
8	CH1608	Chemical Reaction Engineering	0	0	3	3	2	PCC		
		Laboratory								
9	CHVA01	Value added course		1 W	eek		1	EEC		
		(internal only)								
]	TOTAL CREDITS FOR LAB	0	0	3	3	4			
		SEMESTER TOTAL	18	1	5	23	24			
	(°	THEORY + LABORATORY)								

SEMESTER VII

	THEORY									
S No	SUB CODE	COURSE TITLE	L	Т	Р	H	С	CATEGORY		
1	CH1701	Transport Phenomena	3	0	0	3	3	PCC		
2	CH1702	Chemical Process Equipment Design (Integrated Lab)	3	0	2	5	4	PCC		
3	CH1703	Safety and Hazard analysis	3	0	0	3	3	PCC		
4		Professional Elective III	3	0	0	3	3	PEC		
5		Professional Elective IV	3	0	0	3	3	PEC		
6		Open Elective II	3	0	0	3	3	OEC		
	TOTAI	CREDITS FOR THEORY	18	0	2	20	19			
		LABORATORY								
7	CH1707	Mini Project	0	0	3	3	2	PCC		
8	CH1708	Process Control and dynamics Laboratory	0	0	3	3	2	PCC		
9	CH1709	Internship	0	0	0	0	1	EEC		
	ТОТ	AL CREDITS FOR LAB	0	0	6	6	5			
		SEMESTER TOTAL CORY + LABORATORY)	18	0	8	26	24			

SEMESTER VIII

	THEORY									
S No	SUB CODE	COURSE TITLE	L	Т	Р	Н	С	CATEGORY		
1	CH1801	Professional Elective V	3	0	0	3	3	PEC		
1	СПІОЛ	Professional Elective v	3	0	0	3	3	PEC		
2	CH1802	Professional Elective VI	3	0	0	3	3	PEC		
	TOTA	L CREDITS FOR THEORY	6	0	0	6	6			
		LABORATORY								
3	CH1807	Project Work	0	0	20	20	12	EEC		
	ТОТ	CAL CREDITS FOR LAB	0	0	20	20	12			
		SEMESTER TOTAL	6	0	20	26	18			
	(THI	EORY + LABORATORY)								

PROFESSIONAL ELECTIVES (PE) PROFESSIONAL ELECTIVE I, SEMESTER V

	THEORY										
S No	SUB CODE	COURSE TITLE	L	Т	Р	Η	C	CATEGORY			
1	CH1509	Chemical Works Organization and Management	3	0	0	3	3	PEC			
2	CH1510	Membrane Science and Engineering	3	0	0	3	3	PEC			
3	CH1511	Polymer Technology	3	0	0	3	3	PEC			
4	CH1512	Fundamentals of Thermodynamics	3	0	0	3	3	PEC			

PROFESSIONAL ELECTIVE II, SEMESTER VI

	THEORY										
S No	SUB CODE	COURSE TITLE	L	Т	P	Η	С	CATEGORY			
1	CH1609	Industrial Air Pollution	3	0	0	3	3	PEC			
2	CH1610	Industrial Instrumentation	3	0	0	3	3	PEC			
3	CH1611	Electrochemical Engineering	3	0	0	3	3	PEC			
4	CH1612	Process Plant Utilities	3	0	0	3	3	PEC			

PROFESSIONAL ELECTIVE III, SEMESTER VII

	THEORY										
S No	SUB CODE	COURSE TITLE	L	Т	Р	Η	С	CATEGORY			
1	CH1710	Modern Separation Techniques	3	0	0	3	3	PEC			
2	CH1711	Waste Water Treatment	3	0	0	3	3	PEC			
3	CH1712	Fluidization Engineering	3	0	0	3	3	PEC			
4	CH1713	Distillation	3	0	0	3	3	PEC			

PROFESSIONAL ELECTIVE IV, SEMESTER VII

	THEORY										
S No	SUB CODE	COURSE TITLE	L	Т	Р	Η	С	CATEGORY			
1	CH1714	Piping and Instrumentation	3	0	0	3	3	PEC			
2	CH1715	Food Technology	3	0	0	3	3	PEC			
3	CH1716	Biochemical Engineering	3	0	0	3	3	PEC			
4	GE1003	Professional Ethics	3	0	0	3	3	PEC			

PROFESSIONAL ELECTIVE V, SEMESTER VIII

	THEORY										
S No	SUB CODE	COURSE TITLE	L	Т	Р	Η	С	CATEGORY			
1	CH1808	Optimization of Chemical Processes	3	0	0	3	3	PEC			
2	CH1809	Fermentation Engineering	3	0	0	3	3	PEC			
3	CH1810	Nuclear Engineering	3	0	0	3	3	PEC			
4	CH1811	Energy Technology	3	0	0	3	3	PEC			

PROFESSIONAL ELECTIVE VI, SEMESTER VIII

	THEORY											
S No	SUB CODE	COURSE TITLE	L	Т	Р	Η	С	CATEGORY				
1	CH1812	Fertilizer Technology	3	0	0	3	3	PEC				
2	CH1813	Pulp and Paper Technology	3	0	0	3	3	PEC				
3	CH1814	Mixing Theory and Practice	3	0	0	3	3	PEC				
4	CH1815	Petroleum Refining and Petrochemicals	3	0	0	3	3	PEC				

LIST OF COURSES FOR OPEN ELECTIVE I, SEMESTER V

S No	SUB CODE	COURSE TITLE	L	Т	Р	Η	C	CATEGORY
1	OCE103	Environmental Impact Assessments	3	0	0	3	3	OEC
2	OCS101	Introduction to C Programming	3	0	0	3	3	OEC
3	OEE105	Solar Energy Utilization	3	0	0	3	3	OEC
4	OBT101	Industrial Biotechnology	3	0	0	3	3	OEC
5	OBT102	Hazardous Waste Management	3	0	0	3	3	OEC
6	OEE106	Energy Conservation and Management	3	0	0	3	3	OEC

LIST OF COURSES FOR OPEN ELECTIVE II, SEMESTER VII

S No	SUB CODE	COURSE TITLE	L	Т	Р	Η	С	CATEGORY
1	OBT103	Fuel Cell Chemistry	3	0	0	3	3	OEC
2	OEE102	Renewable Energy Sources	3	0	0	3	3	OEC
3	OME102	Design of Experiments	3	0	0	3	3	OEC
4	OBT104	Biosensors	3	0	0	3	3	OEC
5	OME106	Testing of Materials	3	0	0	3	3	OEC
6	OBT105	Introduction to Nanoscience and Nanotechnology	3	0	0	3	3	OEC

AUDIT COURSE

S No	SUB CODE	COURSE TITLE	L	Τ	Р	Η	С	CATEGORY
1	AD1001	Constitution of India	2	0	0	2	0	AC
2	AD1002	Value Education	2	0	0	2	0	AC
3	AD1003	Pedagogy Studies	2	0	0	2	0	AC
4	AD1004	Stress Management by Yoga	2	0	0	2	0	AC
5	AD1005	Personality Development Through Life Enlightenment Skills	2	0	0	2	0	AC
6	AD1006	Unnat Bharat Abhiyan	2	0	0	2	0	AC
7	AD1007	Essence of Indian Knowledge Tradition	2	0	0	2	0	AC
8	AD1008	Sanga Tamil Literature Appreciation	2	0	0	2	0	AC

SUBJECT AREAWISE DETAILS

HUMANITIES AND SOCIAL SCIENCES

(HSMC)

S No	SUB CODE	COURSE TITLE	L	Т	Р	H	C
1	HS1101	Communicative English	4	0	0	3	3
2	HS1201	Professional English	4	0	0	4	3
3	GE1204	Environmental Science and Engineering	3	0	0	3	3

BASIC SCIENCES (BSC)

S No	SUB	COURSE TITLE	L	Т	Р	Η	C
	CODE						
1	MA1102	Engineering Mathematics – I	4	0	0	4	4
2	PH1103	Engineering Physics	3	0	0	3	3
3	CY1104	Engineering Chemistry	3	0	0	3	3
4	GE112	Physics and Chemistry Laboratory	0	0	4	4	2
5	MA1202	Engineering Mathematics – II	4	0	0	4	4
6	PH1255	Physics of Materials	3	0	0	3	3
7	CH1207	Technical Analysis Laboratory	0	0	4	4	2
8	MA1353	Applied numerical analysis	4	0	0	4	4
9	MA1452	Applied probability and statistics	4	0	0	4	4
10	CH1401	Chemistry for chemical Engineers	3	0	0	3	3
11	CH1405	Instrumental Methods Of Chemical Analysis	3	0	0	3	3

ENGINEERING SCIENCES (ESC)

S No	SUB CODE	COURSE TITLE	L	Т	Р	Η	C
	CODE						
1	GE1101	Python Programming	3	1	0	4	3
2	GE1102	Engineering Graphics	2	0	4	5	4
3	GE213	Python Programming Laboratory	0	0	4	4	2
4	GE1205	Basic Civil and Mechanical Engineering	3	0	0	3	3
5	GE1207	Engineering Practices	0	0	4	4	2
6	EE1353	Principles of electrical and electronics engineering	3	0	0	3	3
7	CH1303	Solid Mechanics for technologists	3	0	0	3	3
8	EE1358	Electrical Engineering Laboratory	0	0	3	3	2

PROFESSIONAL CORE (PCC)

S No	SUB CODE	COURSE TITLE	L	Τ	Р	Н	C
1	CODE CH1201	Introduction to Chemical Engineering	3	0	0	3	2
2	CH1301	Process Calculations	3	1	0	4	4
3	CH1302	Fluid Mechanics for chemical Engineers	3	0	0	3	3
4	CH1307	Fluid Mechanics Laboratory	0	0	3	3	2
5	CH1402	Computer applications in Chemical Engineering (Integrated Lab)	3	0	2	5	4
6	CH1403	Mechanical operations	3	0	0	3	3
7	CH1404	Chemical Process Industries	3	0	0	3	3
8	CH1407	Mechanical operations Laboratory	0	0	3	3	2
9	CH1501	Chemical Reaction Engineering I	3	0	0	3	3
10	CH1502	Heat Transfer	3	0	0	3	3
11	CH1503	Mass Transfer I	3	0	0	3	3
12	CH1507	Heat and mass Transfer Laboratory	0	0	3	3	2
13	CH1508	Computational Programming Laboratory for Chemical Engineers	0	0	3	3	2
14	CH1601	Chemical Reaction Engineering II	3	1	0	4	4
15	CH1602	Mass Transfer II (Integrated Laboratory)	3	0	2	4	4
16	CH1603	Chemical Engineering Thermodynamics	3	0	0	3	3
17	CH1604	Process Dynamics and Control	3	0	0	3	3
18	CH1605	Process Economics and Industrial Management	3	0	0	3	3
19	CH1607	Professional Ethical Practice	0	0	3	3	1
20	CH1608	Chemical Reaction Engineering Laboratory	0	0	3	3	2
21	CH1701	Transport Phenomena	3	0	0	3	3
22	CH1702	Chemical Process Equipment Design (Integrated Lab)	3	0	2	5	4
23	CH1703	Industrial Safety	3	0	0	3	3
24	CH1707	Mini Project	0	0	3	3	2
25	CH1708	Process Control Laboratory	0	0	3	3	2

EMPLOYABILITY ENHANCEMENT COURSES (EEC)

S No	SUB CODE	COURSE TITLE	L	Т	Р	Η	C
1	HS1410	Professional Skills Laboratory	0	0	3	2	1
2	CH1709	Internship	0	0	0	0	1
3	CH1807	Project Work	0	0	20	20	12

SUMMARY

S. No.	Subject Area				Credits I	Per Seme	ster			Total Credits
5.110	Susjeet mea	Ι	II	III	IV	V	VI	VII	VIII	
1	HSMC	4	7	-	-	-	-	-	-	11
2	BSC	12	9	4	10	-	-	-	-	35
3	ESC	9	5	8	-	-	-	-	-	22
4	PCC	-	2	9	12	13	20	14	-	70
5	PEC	-	-	-	-	3	3	6	6	18
6	OEC	-	-	-	-	3	-	3	-	6
7	EEC	-	-	-	1	-	-	1	12	14
8	AC	-	-	-	-	-	-	-	-	-
	Total	25	23	21	23	19	23	24	18	174

SEMESTER I

HS1101	Communicative English	L	Т	Р	С
		3	0	0	3
Objectives					
	o develop the basic reading and writing skills of first year engineering and technolo				
	'o help learners develop their listening skills, which will, enable them listen to le	ctures	and		
	omprehend them by asking questions; seeking clarifications. 'o help learners develop their speaking skills and speak fluently in real contexts.				
	'o help learners develop vocabulary of a general kind by developing their reading sk	ills			
	tcomes (CO)				
CO1	To familiarize the student's basic concepts of units, dimensions, and other tech	nical te	erms, a	and er	able
	them to do unit conversions.				
CO2	To introduce the concepts of material balances by taking industrial examples an	d train	in ma	thema	itical
	computations with respect to bypass, purging and recycle operations				
CO3	To introduce the concept of ideal and non-ideal systems and related problems a	nd trai	ning th	ne stud	lents
	with combustion problems.		C		
CO4	Effectively bring in the concept of energy balances and computations in various	types o	f ener	gy bal	ance
	problems related to chemical industries.				
CO5	To bring in the latest advancements in design and modelling, related process similar	ulators	and pr	oblen	is on
	non ideal systems.				
UNIT - I	SHARING INFORMATION RELATED TO ONESELF/FAMILY& FRIEN	DS			9
Reading –	critical reading - finding key information in a given text - shifting facts from	n opin	ions -	Writ	ing -
autobiograp	hical writing - developing hints. Listening- short texts- short formal and informal c	onvers	ations.	. Spea	king-
basics in sp	beaking - introducing oneself - exchanging personal information- speaking on gi	ven to	pics &	z situa	itions
Language d	evelopment- voices- Wh- Questions- asking and answering-yes or no questions- p	arts of	speecl	h.	
Vocabulary	development prefixes- suffixes- articles - Polite Expressions.				
UNIT - II	GENERAL READING AND FREE WRITING				9
Comprehen writing, sho TED talks asking and guessing n	hort narratives and descriptions from newspapers (including dialogues and consistent sion Texts with varied question types - Writing – paragraph writing - topic senter ort narrative descriptions using some suggested vocabulary and structures –. La - extensive speech on current affairs and discussions Speaking — describing answering questions - Language development – prepositions, clauses. Voca beanings of words in context –use of sequence words.	ence- n istenin a sim	nain ic g - lor ple pr	leas- f ng tex rocess	free ts - ent-
UNIT - III					9
types of pa and long sp Language d	nort texts and longer passages (close reading) & making a critical analysis of the ragraph and writing essays — rearrangement of jumbled sentences. Listening: beeches for comprehension. Speaking- role plays -asking about routine actions and evelopment- degrees of comparison- pronouns- Direct vs. Indirect Questions. Voc ad phrases- cause & effect expressions, adverbs.	Listeni 1 expre	ng to ssing	ted ta opinio	lks ons.
UNIT - IV	READING AND LANGUAGE DEVELOPMENT				9
informal or TOEFL and present-sim	omprehension-reading longer texts- reading different types of texts- magazines. V personal letters-e-mails-conventions of personal email- Listening: Listening co d others). Speaking -Speaking about friends/places/hobbies - Language develop ple past- present continuous and past continuous- conditionals — if, unless, in o development- synonyms-antonyms- Single word substitutes- Collocations.	mprehe ment-	ension Tense	(IEL s- sim	TS, iple

UNIT - V EXTENDED WRITING

Reading: Reading for comparisons and contrast and other deeper levels of meaning – Writing- brainstorming - writing short essays – developing an outline- identifying main and subordinate ideas- dialogue writing- Listening - popular speeches and presentations - Speaking - impromptu speeches & debates Language development-modal verbs- present/ past perfect tense - Vocabulary Development-Phrasal verbs- fixed and semi-fixed expressions

Text Books:

Total Periods:45 PERIODS

9

1. Board of Editors. Using English, A Course book for Undergraduate Engineers and Technologists. Orient Black SwanLimited, Hyderabad: 2020

Sanjay Kumar & Pushp Lata Communication Skills Second Edition, Oxford University Press 2015.
 Richards, C. Jack. Interchange Students' Book-2 New Delhi: CUP, 2015.

Reference Books:

- 1. Bailey, Stephen. Academic Writing: A practical guide for students. New York: Rutledge, 2011.
- 2. Means, L. Thomas and Elaine Langlois. English & Communication for Colleges. Cengage Learning, USA: 2007
- 3. Redston, Chris & Gillies Cunningham Face 2 Face (Pre-intermediate Student 's Book& Workbook) Cambridge University Press, New Delhi: 2005
- 4. Comfort, Jeremy, et al. Speaking Effectively: Developing Speaking Skills for Business English. Cambridge University Press, Cambridge: Reprint 2011
- 5. Dutt P. Kiranmai and Rajeevan Geeta Basic Communication Skills, Foundation Books: 2013
- 6. John Eastwood et al : Be Grammar Ready: The Ultimate Guide to English Grammar, Oxford University Press: 2020.

Course Outcomes					Pr	ogram	Outco	omes					Spe	gram cific comes
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	0	0	3	0	0	3	0	0	3	0	0	3	1	2
CO2	0	0	0	0	0	0	0	0	0	0	0	0	1	2
CO3	3	0	1	3	0	1	3	0	1	3	0	1	1	2
CO4	1	0	2	1	0	2	1	0	2	1	0	2	1	2
CO5	1	0	1	1	0	1	1	0	1	1	0	1	1	2

MA1102	Engineering Mathematics – I	L	Т	Р	C
		4	0	0	4

Objectives

- ✓ The goal of this course is to achieve conceptual understanding and to retain the best traditions of traditional calculus.
- ✓ The syllabus is designed to provide the basic tools of calculus mainly for the purpose of modeling the engineering problems mathematically and obtaining solutions.
- ✓ Matrix Algebra is one of the powerful tools to handle practical problems arising in the field of engineering.
- ✓ This is a foundation course of Single Variable and multivariable calculus plays an important role in the understanding of science, engineering, economics and computer science, among other disciplines.

CO1	To have a clear idea of matrix algebra pertaining Eigenvalues and Eigenvectors in addition dealing	
	with quadratic forms.	
CO2	To understand the concept of limit of a function and apply the same to deal with continuity an	d
	derivative of a given function. Apply differentiation to solve maxima and minima problems, which	
	are related to real world problems.	
CO3	To have the idea of extension of a function of one variable to several variables. Multivariablefunction	IS
	of real variables are inevitable in engineering.	
CO4	To understand the concept of integration through fundamental theorem of calculus. Also, acquir	e
	skills to evaluate the integrals using the techniques of substitution, partial fraction and integration	
	by parts along with the knowledge of improper integrals.	
CO5	To do double and triple integration so that they can handle integrals of higher order which areapplie	d
	in engineering field.	
UNIT - I	MATRICES	12
Eigenvalue	s and Eigenvectors of a real matrix – Characteristic equation – Properties of Eigenvalues and Eigenve	ectors
- Cayley-H	Iamilton theorem – Diagonalization of matrices – Reduction of a quadratic form to canonical for	m by
•••	transformation – Nature of quadratic forms	2
UNIT - II	CALCULUS OF ONE VARIABLE	12
	function - Continuity - Derivatives - Differentiation rules – Interval of increasing and decreas	
	- Maxima and Minima - Intervals of concavity and convexity.	mg
UNIT - III	CALCULUS OF SEVERAL VARIABLES	12
Partial diff	erentiation – Homogeneous functions and Euler's theorem – Total derivative – Change of variabl	es –
	- Partial differentiation of implicit functions - Taylor's series for functions of two variable	
	nd minima of functions of two variables – Lagrange's method of undetermined multipliers.	
UNIT - IV	INTEGRAL CALCULUS	12
Definite and	d Indefinite integrals - Substitution rule - Techniques of Integration - Integration by parts, Trigonome	etric
integrals, T	rigonometric substitutions, Integration of rational functions by partial fraction, Integration of irration	onal
functions -	Improper integrals.	
UNIT - V	MULTIPLE INTEGRALS	12
Double inte	egrals – Change of order of integration – Double integrals in polar coordinates – Area enclosed by	olane
	hange of variables from Cartesian to polar in double integrals- Triple integrals – Volume of solids	
	Total Periods: 60 PERIODS	
Text Books		,
	B.S., Higher Engineering Mathematics, Khanna Publishers, New Delhi, 43 rd Edition, 2014.	
	tewart, "Calculus: Early Transcendental", Cengage Learning, 7th Edition, New Delhi, 2014.	to T Pr
	tions 2.2, 2.3, 2.5, 2.7(Tangents problems only), 2.8, 3.1 to 3.6, 3.11, 4.1, 4.3, 5.1(Area problems only)), 5.2,
5.3, 5.4 ((excluding net change theorem), 5.5, 7.2	
Reference	Books:	
	I, Bivens, I and Davis, S, "Calculus", Wiley, 10th Edition, 2016.	
	and Iyengar S.R.K., —Advanced Engineering Mathematics, Narosa Publications, New Delhi, 3rd Ec	lition
2. Jan K.K 2007.	and ryongar S.N.N., —Advanced Englicering Matternatics, Natosa Fublications, New Denni, SId Ed	шион,
	on S and Manianya har am Dillai T. K. Calaulus Values I and U. S. Marsardon D. 11, 1 D.	T t -1
-	an, S. and Manicavachagom Pillai, T. K., —Calculus" Volume I and II, S. Viswanathan Publishers Pvt	. Lta.,
Chennai		
4. Srimanth	a Pal and Bhunia, S.C, "Engineering Mathematics" Oxford University Press, 2015.	
5 T Veera	rajan. Engineering Mathematics – I, McGraw Hill Education; First edition 2017.	

Cours Outcom						Pr	ogram	o Outco	omes					Spe	gram ecific comes	
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1		3	3	3	1	2	3	0	0	3	2	3	3	2	2	
CO2		3	3	3	2	2	1	0	0	0	0	1	2	2	1	
CO3		3	3	3	2	2	1	0	0	0	0	1	2	2	2	
CO4		3	3	3	2	2	1	0	0	0	0	1	2	2	2	
CO5		3	3	3	2	1	1	0	0	0	0	1	2	2	2	
PH1103					E	nginee	ring P	hysics					L	Т	Р	С
													3	0	0	3
Objectives To make t																
✓ Qı	iantun arious	n conc crysta	cepts to al struc	explai	n black	x body	radiati		npton e	effect a	nd mat	s devic ter wav				
Course Out	r	. ,			io pro	ortu	and st	occ ctr	ain di	ogram	datar	minatio	on of rig	ridity r	noduli	10 h
COI								y vario			deter	mnauc	on or rig	gianty i	nodun	is u
CO2	To u	inders	tand th	e prin	ciple o	f laser	, Einst	ein's co	oefficie	ents of			semicon		laser a	and it
			•										n system			
CO3								lids an low of		determ	ination	of the	ermal co	onductiv	vity in	aba
CO4			-		-			e to exp n micro			•		Compto	on effec	ct and	wav
CO5		nderst		e impo	rtance	of vari	ous cry	stal str	uctures	, Mille	r indice	es and v	various g	growth		
UNIT - I			TIES (OF MA	TTEF	ł										9
Elasticity – S	Stress-	strain	diagra	m and	its use	s - fact	tors aff	ecting	elastic	modul	us and	tensile	strength	n – tors	ional s	stress
and deformation			Ū.	•		•		•	-			•		~		
cantilever: th	-		-						-	•	and ex	perime	nt – Pra	ctical a	pplica	tions
of modulus of			•	•			e to be	nding i	n beam	ıs.						•
UNIT - II			ND FI				•	1 D	<u> </u>	4 1	· ,.			•,		9
Lasers : pop amplification medical app fibers (mate Double cruck	i (qual licatio rial, re	itative ons of efract	e) – Nd Laser- tive inc	-YAG - Fiber lex, m	Laser-S optics ode) –	Semico : princ losses	onducto iple, n s assoc	or lasers umeric viated v	s: homo al aper vith op	o juncti ture ar otical f	on and nd acce Tibers -	heteroj ptance - Fabri	unction angle - cation o	– Indu types o of Optio	strial a of opti cal fit	and cal
of optical fit											<u></u>					
UNIT - III			AL PH													9
Transfer of l conduction, c conduction th heat- therma UNIT - IV	convec nrough l insula	ction a n comp ation -	and rac pound	liation media cations	– heat (series : heat e	condu and pa	ctions rallel)-	in solic Lee's o	ls – the lisc me	ermal c ethod: t	onduct heory a	ivity —] and exp	Rectiline eriment	ear flov - Radia	v of he il flow	eat-

Black body radiation – Planck's theory (derivation) – Compton effect: theory and experimental verification – wave particle duality – electron diffraction – concept of wave function and its physical significance – Schrödinger's wave equation – time independent and time dependent equations – particle in a one-dimensional rigid box – Electron microscope-tunneling (qualitative) - scanning tunneling microscope-Applications of electron microscopy.

9

UNIT - V CRYSTAL PHYSICS

Single crystalline, polycrystalline and amorphous materials – single crystals: unit cell, crystal systems, Bravais lattices, directions and planes in a crystal, Miller indices – inter-planar distances coordination number and packing factor for SC, BCC, FCC, HCP and diamond structures – Graphite structure-crystal imperfections: point defects, line defects – Burger vectors, stacking faults – growth of single crystals: solution and melt growth techniques- Epitaxial growth-Applications of Single crystal (Qualitative).

Total Periods:	45 PERIODS

1. Bhattacharya, D.K. & Poonam, T. "Engineering Physics". Oxford University Press, 2017.

- 2. Gaur, R.K. & Gupta, S.L. "Engineering Physics". Dhanpat Rai Publishers, 2012.
- 3. Pandey, B.K. & Chaturvedi, S. "Engineering Physics". Cengage Learning India, 2013.

Reference Books:

Text Books:

- 1. Halliday, D., Resnick, R. & Walker, J. "Principles of Physics". Wiley, 2015.
- 2. Serway, R.A. & Jewett, J.W. "Physics for Scientists and Engineers". Cengage Learning, 2019.
- 3. Tipler, P.A. & Mosca, G. "Physics for Scientists and Engineers with Modern Physics'. W.H.Freeman, 2014.

Course Outcomes					Pr	ogram	Outco	omes					Spe	gram ecific comes
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	3	3	3	2	2	1	3	2	1	2	3	2
CO2	3	3	3	2	3	2	2	1	2	2	2	1	2	2
CO3	3	3	2	2	2	1	2	1	2	1	1	2	2	2
CO4	3	3	2	2	2	1	1	1	1	1	1	3	3	3
CO5	3	3	3	3	2	1	2	1	3	1	1	3	3	3

CY1104	Engineering Chemistry	L	Т	Р	С
		3	0	0	3
Objective	s				
To make the	he student conversant with the				
\checkmark	Principles of water characterization and treatment for industrial purposes.				
\checkmark	Principles and applications of surface chemistry and catalysis.				
\checkmark	Phase rule and various types of alloys				
\checkmark	Various types of fuels, applications and combustion				
\checkmark	Conventional and non-conventional energy sources and energy storage device				
Course O	utcomes (CO)				
CO1	Able to understand impurities in industrial water, boiler troubles, internal a methods of purifying water.	nd ext	ernal t	reatme	nt
CO2	Able to understand concepts of absorption, adsorption, adsorption isotherm	is, app	licatior	n ofads	orption
	for pollution abatement, catalysis and enzyme kinetics.				

CO3	Able to recognize significance of alloying, functions of alloying elements and types of alloys, uses phase rule, reduced phase and its applications in alloying.	s ofalloy
CO4	Able to identify various types of fuels, properties, uses and analysis of fuels. They should be understand combustion of fuels, method of preparation of bio-diesel, synthetic petrol.	e able
CO5	Able to understand conventional, non-conventional energy sources, nuclear fission and fusio power generation by nuclear reactor, wind, solar energy and preparation, uses of various batteries.	
UNIT - I	WATER AND ITS TREATMENT	9
Hardness (of water – Types – Expression of hardness – Units – Estimation of hardness by EDTA method – N	umerica
problems (on EDTA method – Boiler troubles (scale and sludge, caustic embrittlement, boiler corrosion, prir	ning an
-	- Treatment of boiler feed water – Internal treatment (carbonate, phosphate, colloidal, sodium alumi	-
-	nditioning) – External treatment – Ion exchange process, Zeolite process – Desalination of brackis	
e	everse Osmosis.	
UNIT -	SURFACE CHEMISTRY AND CATALYSIS	9
II		_
using PAC Catalysis: (surface reactions – Adsorption in chromatography – Applications of adsorption in pollution abat C. Catalyst – Types of catalysis – Criteria – Contact theory – Catalytic poisoning and catalytic promote applications of catalysts – Catalytic convertor – Auto catalysis – Enzyme catalysis – Michaelis-N	rs –
equation. UNIT - III Phase rule phase rule Alloys: Int	PHASE RULE AND ALLOYS : Introduction – Definition of terms with examples – One component system – Water system – R – Thermal analysis and cooling curves – Two component systems – Lead-silver system – Pattinson p roduction – Definition – Properties of alloys – Significance of alloying – Functions and effect of alloy Nichrome, Alnico, Stainless steel (18/8) – Heat treatment of steel – Non-ferrous alloys – Brass and b	rocess. ving
equation. UNIT - III Phase rule phase rule Alloys: Int elements – UNIT - IV	: Introduction – Definition of terms with examples – One component system – Water system – R – Thermal analysis and cooling curves – Two component systems – Lead-silver system – Pattinson p roduction – Definition – Properties of alloys – Significance of alloying – Functions and effect of alloy Nichrome, Alnico, Stainless steel (18/8) – Heat treatment of steel – Non-ferrous alloys – Brass and b FUELS AND COMBUSTION	educed rocess. ving pronze. 9
equation. UNIT - III Phase rule: phase rule: Alloys: Int: elements – UNIT - IV Fuels: Intro (proximate – Cracking – Diesel of biodiesel. Combustion	Introduction – Definition of terms with examples – One component system – Water system – R – Thermal analysis and cooling curves – Two component systems – Lead-silver system – Pattinson p roduction – Definition – Properties of alloys – Significance of alloying – Functions and effect of alloy Nichrome, Alnico, Stainless steel (18/8) – Heat treatment of steel – Non-ferrous alloys – Brass and B FUELS AND COMBUSTION oduction – classification of fuels – Comparison of solid, liquid, gaseous fuels – Coal – Analysis e and ultimate) – Carbonization – Manufacture of metallurgical coke (Otto Hoffmann method) –Pet g – Manufacture of synthetic petrol (Bergius process, Fischer Tropsch Process) – Knocking –Octane r l – Cetane number – Compressed natural gas (CNG) – Liquefied petroleum gases (LPG) – Power alco on of fuels: Introduction – Calorific value – Higher and lower calorific values – Theoretical calcula alue – Ignition temperature – Spontaneous ignition temperature – Explosive range – Flue gas analysi	educed rocess. ving pronze. 9 of coal roleum number pholand tionof
equation. UNIT - III Phase rule: phase rule: Alloys: Int: elements – UNIT - IV Fuels: Intro (proximate – Cracking – Diesel oi biodiesel. Combustio calorific va by Orsat M UNIT - V	: Introduction – Definition of terms with examples – One component system – Water system – R – Thermal analysis and cooling curves – Two component systems – Lead-silver system – Pattinson p roduction – Definition – Properties of alloys – Significance of alloying – Functions and effect of alloy Nichrome, Alnico, Stainless steel (18/8) – Heat treatment of steel – Non-ferrous alloys – Brass and R FUELS AND COMBUSTION oduction – classification of fuels – Comparison of solid, liquid, gaseous fuels – Coal – Analysis e and ultimate) – Carbonization – Manufacture of metallurgical coke (Otto Hoffmann method) –Pet g – Manufacture of synthetic petrol (Bergius process, Fischer Tropsch Process) – Knocking –Octane r l – Cetane number – Compressed natural gas (CNG) – Liquefied petroleum gases (LPG) – Power alco on of fuels: Introduction – Calorific value – Higher and lower calorific values – Theoretical calcula alue – Ignition temperature – Spontaneous ignition temperature – Explosive range – Flue gas analysi fethod. NON-CONVENTIONAL ENERGY SOURCES AND STORAGE DEVICES	educed rocess. ving pronze. 9 of coal roleum number pholand tionof s 9
equation. UNIT - III Phase rule: phase rule: Alloys: Int: elements – UNIT - IV Fuels: Intro (proximate – Cracking – Diesel oi biodiesel. Combustio calorific va by Orsat M UNIT - V	: Introduction – Definition of terms with examples – One component system – Water system – R – Thermal analysis and cooling curves – Two component systems – Lead-silver system – Pattinson p roduction – Definition – Properties of alloys – Significance of alloying – Functions and effect of alloy Nichrome, Alnico, Stainless steel (18/8) – Heat treatment of steel – Non-ferrous alloys – Brass and the FUELS AND COMBUSTION oduction – classification of fuels – Comparison of solid, liquid, gaseous fuels – Coal – Analysis e and ultimate) – Carbonization – Manufacture of metallurgical coke (Otto Hoffmann method) –Pet g – Manufacture of synthetic petrol (Bergius process, Fischer Tropsch Process) – Knocking –Octane r 1 – Cetane number – Compressed natural gas (CNG) – Liquefied petroleum gases (LPG) – Power alco point of fuels: Introduction – Calorific value – Higher and lower calorific values – Theoretical calcula alue – Ignition temperature – Spontaneous ignition temperature – Explosive range – Flue gas analysi fethod.	educed rocess. ving pronze. 9 of coal roleum number pholand tionof s 9
equation. UNIT - III Phase rule: phase rule: Alloys: Int: elements – UNIT - IV Fuels: Intro (proximate – Cracking – Diesel oi biodiesel. Combustio calorific va by Orsat M UNIT - V Nuclear en reactors – I	: Introduction – Definition of terms with examples – One component system – Water system – R – Thermal analysis and cooling curves – Two component systems – Lead-silver system – Pattinson p roduction – Definition – Properties of alloys – Significance of alloying – Functions and effect of alloy Nichrome, Alnico, Stainless steel (18/8) – Heat treatment of steel – Non-ferrous alloys – Brass and R FUELS AND COMBUSTION oduction – classification of fuels – Comparison of solid, liquid, gaseous fuels – Coal – Analysis e and ultimate) – Carbonization – Manufacture of metallurgical coke (Otto Hoffmann method) –Pet g – Manufacture of synthetic petrol (Bergius process, Fischer Tropsch Process) – Knocking –Octane r l – Cetane number – Compressed natural gas (CNG) – Liquefied petroleum gases (LPG) – Power alco on of fuels: Introduction – Calorific value – Higher and lower calorific values – Theoretical calcula alue – Ignition temperature – Spontaneous ignition temperature – Explosive range – Flue gas analysi fethod. NON-CONVENTIONAL ENERGY SOURCES AND STORAGE DEVICES	educed rocess. ving poronze. 9 of coal roleum number pholand tionof s 9 ion of
equation. UNIT - III Phase rule: phase rule: Alloys: Intre elements – UNIT - IV Fuels: Intro (proximate – Cracking – Diesel oi biodiesel. Combustio calorific va by Orsat M UNIT - V Nuclear en reactors – I – Wind end	 Introduction – Definition of terms with examples – One component system – Water system – R – Thermal analysis and cooling curves – Two component systems – Lead-silver system – Pattinson p roduction – Definition – Properties of alloys – Significance of alloying – Functions and effect of alloy Nichrome, Alnico, Stainless steel (18/8) – Heat treatment of steel – Non-ferrous alloys – Brass and R FUELS AND COMBUSTION oduction – classification of fuels – Comparison of solid, liquid, gaseous fuels – Coal – Analysis e and ultimate) – Carbonization – Manufacture of metallurgical coke (Otto Hoffmann method) –Pet g – Manufacture of synthetic petrol (Bergius process, Fischer Tropsch Process) – Knocking –Octane r 1 – Cetane number – Compressed natural gas (CNG) – Liquefied petroleum gases (LPG) – Power alco on of fuels: Introduction – Calorific value – Higher and lower calorific values – Theoretical calcula alue – Ignition temperature – Spontaneous ignition temperature – Explosive range – Flue gas analysi fethod. 	educed rocess. ving pronze. 9 of coal roleum number pholand tion of 9 ion of

- 1. P.C.Jain, Monica Jain, "Engineering Chemistry" 17th Ed., Dhanpat Rai Pub. Co., New Delhi, (2015).
- 2. S.S. Dara, S.S. Umare, "A text book of Engineering Chemistry" S.Chand & Co.Ltd., New Delhi (2020).
- 3. S. Vairam, P. Kalyani and Suba Ramesh, "Engineering Chemistry", Wiley India (P) Ltd. New Delhi, (2018).
- 4. P. Kannan, A. Ravikrishnan, "Engineering Chemistry", Sri Krishna Hi-tech Publishing Company (P) Ltd., Chennai, (2009).

Reference Books:

- 1. B.K.Sharma "Engineering Chemistry" Krishna Prakasan Media (P) Ltd., Meerut (2001).
- 2. B. Sivasankar "Engineering Chemistry" Tata McGraw-Hill Pub.Co.Ltd, New Delhi (2008).
- 3. Prasanta Rath, "Engineering Chemistry", Cengage Learning India (P) Ltd., Delhi, (2015).
- 4. Shikha Agarwal, "Engineering Chemistry–Fundamentals and Applications", Cambridge University Press, Delhi, (2015).
- 5. A. Pahari, B. Chauhan, "Engineering Chemistry", Firewall Media, New Delhi., (2010).
- 6. A. Sheik Mideen, Engineering Chemistry, Airwalk Publications, Chennai (2018)

Course Outcomes					Pr	ogram	Outco	omes					gram ecific comes	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	3	3	3	2	3	2	2	2	2	2	2	2
CO2	3	3	2	2	2	2	2	1	1	1	1	2	2	2
CO3	3	3	3	3	3	2	2	1	2	2	2	2	2	2
CO4	3	3	3	2	2	3	3	2	2	3	2	2	3	2
CO5	3	2	3	3	3	3	3	2	2	2	2	2	3	2

GE1105	Problem Solving and Python Programming (Common for all branches of B.E. /B. Tech Programmes)	L	Т	Р	С
		3	0	0	3
Objectives					
	know the basics of algorithmic problem solving				
	write simple python programs				
	develop python program by using control structures and functions				
	use python predefined data structures				
	write file based program				
	itcomes (CO)				
CO1	Develop algorithmic solutions to simple computational problems				
CO2	Develop simple console application in python				
CO3	Develop python program by applying control structure and decompose program into f	uncti	ons.		
CO4	Represent compound data using python lists, tuples, and dictionaries.				
CO5	Read and write data from/to files in Python.				
UNIT - I	ALGORITHMIC PROBLEM SOLVING				9
Algorithms	, building blocks of algorithms (statements, state, control flow, functions), notation (pse	udo c	ode,	flow	chart,
programmi	ng language), algorithmic problem solving, Basic algorithms, flowcharts and pseudo	code	for a	seque	ential,
decision pr	ocessing and iterative processing strategies, Illustrative problems: find minimum in a l	ist, ir	nsert	a car	d in a
list of sorte	d cards, guess an integer number in a range, Towers of Hanoi.				
UNIT -	INTRODUCTION TO PYTHON				9

Python Introduction, Technical Strength of Python, Python interpreter and interactive mode; Introduction to colab, pycharm and jupyter idle(s), values and types: int, float, Boolean, string, and list; Built-in data types, variables, Literals, Constants, statements, Operators; Assignment, Arithmetic, Relational, Logical, Bitwise operators and their precedence, , expressions, tuple assignment; Accepting input from Console, printing statements, Simple 'Python' programs. 9

UNIT -

CONTROL FLOW, FUNCTIONS AND STRINGS

III

Conditionals: Boolean values and operators, conditional (if), alternative (if-else), chained conditional (if-elif-else); Iteration: while, for; Loop manipulation using pass, break, continue, and else; Modules and Functions, function definition and use, flow of execution, parameters and arguments; local and global scope, return values, function composition, recursion; Strings: string slices, immutability, string functions and methods, string module; Illustrative programs: square root, gcd, exponentiation, sum an array of numbers, linear search, binary search. 9

LISTS, TUPLES, DICTIONARIES UNIT -IV

Lists: Defining list and list slicing, list operations, list slices, list methods, list loop, List Manipulation, mutability, aliasing, cloning lists, list parameters; Lists as arrays, Tuples: tuple assignment, tuple as return value, Tuple Manipulation; Dictionaries: operations and methods; advanced list processing – list comprehension; Illustrative programs: selection sort, insertion sort, merge sort, histogram.

UNIT -**FILES, MODULES, PACKAGES**

Files and exception: Concept of Files, Text Files; File opening in various modes and closing of a file, Format Operators, Reading from a file, Writing onto a file, File functions-open (), close (), read (), read line (), readlines(), write(), write lines (),tell(),seek(), Command Line arguments. Errors and exceptions, handling exceptions, modules, packages; introduction to numpy, matplotlib. Illustrative programs: word count, copy file.

> **Total Periods: 45 PERIODS**

9

Text Books:

1. Reema Thareja, "Python Programming using problem solving approach", Oxford University Press, 2nd edition, 2018.

- 2. Allen B. Downey, "Think Python: How to Think Like a Computer Scientist ", 2nd edition, Updated for Python 3, Shroff/O 'Reilly Publishers, 2016
- 3. (http://greenteapress.com/wp/thinkpython/)
- 4. Guido van Rossum and Fred L. Drake Jr, —An Introduction to Python Revised and updated for Python 3.2, Network Theory Ltd., 2011.

Reference Books:

- 1. John V Guttag, --Introduction to Computation and Programming Using Python ", Revised and expanded Edition, MIT Press, 2013.
- 2. Robert Sedgewick. Kevin Wayne, Robert Dondero, —Introduction to Programming in Python: An Inter-Disciplinary Approach, Pearson India Education Services Pvt. Ltd., 2016.
- 3. Timothy A. Budd, —Exploring Python^{II}, Mc-Graw Hill Education (India) Private Ltd., 2015.
- 4. Kenneth A. Lambert, -Fundamentals of Python: First Programs, CENGAGE Learning, 2012.
- 5. Charles Dierbach. —Introduction to Computer Science using Python: A Computational Problem-Solving Focus, Wiley India Edition, 2013.
- 6. Paul Gries, Jennifer Campbell and Jason Montojo, —Practical Programming: An Introduction.

L L I F (Common for all branches of B.E. /B. Tech Programmes) 2 0 4 4 Objectives 2 0 4 4 Output To expose them to existing national standardized form whenever technical drawing is needed. 5 7 to inculcate drawing practice in standardized form whenever technical drawings. CONCEPTS AND CONVENTIONS (Not for Examination) 4 4 6	Outcom	e nes					Pr	ogram	Outco	mes						Spec utco	
CO2 3 3 3 - 2 - 2 3 2 - 2 1 1 CO3 3 3 3 - 2 - 2 3 2 - 2 1 1 CO4 3 3 3 - 2 - 2 3 2 - 2 1 1 CO5 3 3 3 - 2 - 2 3 2 - 2 1 1 CO5 3 3 3 - 2 - 2 3 2 - 2 1 1 CO5 3 3 3 - 2 - 2 3 2 - 2 1 1 CO5 3 3 3 - 2 - 2 3 2 - 2 1 1 CO5 3 3 3 - 2 - 2 3 2 - 2			1	2	3	4	5	6	7	8	9	10	11	12	1		2
CO3 3 3 - 2 - 2 3 2 - 2 1 1 CO4 3 3 3 - 2 - 2 3 2 - 2 1 1 CO5 3 3 3 - 2 - 2 3 2 - 2 1 1 CO5 3 3 - 2 - 2 3 2 - 2 1 1 CO5 3 3 - 2 - 2 1 1 1 </td <td>C01</td> <td></td> <td>3</td> <td>3</td> <td>3</td> <td>-</td> <td>2</td> <td>-</td> <td>-</td> <td>2</td> <td>3</td> <td>2</td> <td>-</td> <td>2</td> <td>1</td> <td></td> <td>1</td>	C01		3	3	3	-	2	-	-	2	3	2	-	2	1		1
CO4 3 3 3 - 2 - 2 3 2 - 2 1 1 CO5 3 3 3 - 2 - 2 3 2 - 2 1 1 GE1106 Engineering Graphics L T P 1 1 GE1106 Common for all branches of B.E. /B. Tech Programmes) 2 0 4 4 Objectives 2 0 4 4 4 2 0 4 4 Objectives 2 0 4 <td< td=""><td>CO2</td><td></td><td>3</td><td>3</td><td>3</td><td>-</td><td>2</td><td>-</td><td>-</td><td>2</td><td>3</td><td>2</td><td>-</td><td>2</td><td>1</td><td></td><td>1</td></td<>	CO2		3	3	3	-	2	-	-	2	3	2	-	2	1		1
CO5 3 3 3 - 2 - 2 3 2 - 2 1 1 GE1106 Engineering Graphics L T L T P C C C L T P Objectives L T T Objectives - C T Objectives - C T Objectives - C T Objectives - T Objectives CONCEPTS AND CONVENTIONS (Not for Examination) C CONCEPTS AND CONVENTIONS (Not for Examination) Objectives CO0 To ounderstand the fundamentals and standards of Engineering graphics CO1 To understand the concept of orthographic projections of lines and plane surfaces	CO3		3	3	3	-	2	-	-	2	3	2	-	2	1		1
GE1106 Engineering Graphics (Common for all branches of B.E. /B. Tech Programmes) L T P	CO4		3	3	3	-	2	-	-	2	3	2	-	2	1		1
L L I F (Common for all branches of B.E. /B. Tech Programmes) 2 0 4 4 Dbjectives 2 0 4 4 Objectives ✓ To develop graphic skills for communication of concepts, ideas and design of engineering products. ✓ To inculcate drawing practice in standardized form whenever technical drawing is needed. ✓ To expose them to existing national standards related to technical drawings. CONCEPTS AND CONVENTIONS (Not for Examination) ✓ To upportance of graphics in engineering applications – Use of drafting instruments – BIS conventions andspecifications – Size, layout and folding of drawing sheets – Lettering and dimensioning. COurse Outcomes (CO) CO1 To understand the fundamentals and standards of Engineering graphics CO2 To perform freehand sketching of basic geometrical constructions and multiple views of objects CO3 To understand the concept of orthographic projections of lines and plane surfaces 7 CO4 To draw the projections of section of solids and development of surfaces 7 Superbola by eccentricity method – Construction of cycloidal curves – construction of involutes of square and circ Drawing of tangents and normal to the above curves. 7 Visualization concepts and Free Hand sketching: Visualization principles –Representation of Three-Dimension	CO5		3	3	3	-	2	-	-	2	3	2	-	2	1		1
L L I F (Common for all branches of B.E. /B. Tech Programmes) 2 0 4 4 Objectives 7 To develop graphic skills for communication of concepts, ideas and design of engineering products. 7 To inculcate drawing practice in standardized form whenever technical drawing is needed. 7 7 To expose them to existing national standards related to technical drawings. CONCEPTS AND CONVENTIONS (Not for Examination) 7 Miportance of graphics in engineering applications – Use of drafting instruments – BIS conventions andspecifications – Size, layout and folding of drawing sheets – Lettering and dimensioning. Course Outcomes (CO) CO1 To understand the fundamentals and standards of Engineering graphics CO2 To perform freehand sketching of basic geometrical constructions and multiple views of objects CO3 To understand the concept of orthographic projections of lines and plane surfaces 7 CO4 To draw the projections of section of solids and development of surfaces 7 7 CO5 To visualize and to project isometric and perspective sections of si						F	•	·	<u>.</u>								
2 0 4 4 Objectives 2 0 4 4 ✓ To develop graphic skills for communication of concepts, ideas and design of engineering products. ✓ ✓ To inculcate drawing practice in standardized form whenever technical drawing is needed. ✓ ✓ To expose them to existing national standards related to technical drawings. CONCEPTS AND CONVENTIONS (Not for Examination) ✓ Importance of graphics in engineering applications – Use of drafting instruments – BIS conventions andspecifications – Size, layout and folding of drawing sheets – Lettering and dimensioning. Course Outcomes (CO) C01 To understand the fundamentals and standards of Engineering graphics CO2 C03 To understand the concept of orthographic projections of lines and plane surfaces CO4 C04 To draw the projections of section of solids and development of surfaces 7 C05 To visualize and to project isometric and perspective sections of simple solids 7 Drawing of tangents and normal to the above curves. 7 7 Saic Geometricity method – Construction of cycloidal curves – construction of Involutes of square and circ 7 Drawing of tangents and normal to the above curves. 7 7 Visualization concepts and Free Hand sketching: Visualizat	<i>э</i> Е1106			(Comr	non fo		0	0	-	ch Pro	gramm	es)		L	Т	Р	0
 To develop graphic skills for communication of concepts, ideas and design of engineering products. To inculcate drawing practice in standardized form whenever technical drawing is needed. To expose them to existing national standards related to technical drawings. CONCEPTS AND CONVENTIONS (Not for Examination) Importance of graphics in engineering applications – Use of drafting instruments – BIS conventions andspecifications – Size, layout and folding of drawing sheets – Lettering and dimensioning. Course Outcomes (CO) CO1 To understand the fundamentals and standards of Engineering graphics CO2 To perform freehand sketching of basic geometrical constructions and multiple views of objects CO3 To understand the concept of orthographic projections of lines and plane surfaces CO4 To draw the projections of section of solids and development of surfaces CO5 To visualize and to project isometric and perspective sections of simple solids UNIT - I PLANE CURVES AND FREEHAND SKETCHING 7 Basic Geometrical constructions, Curves used in engineering practices: Conics – Construction of ellipse, parabola hyperbola by eccentricity method – Construction of cycloidal curves – construction of involutes of square and circ Drawing of tangents and normal to the above curves. Visualization concepts and Free Hand sketching: Visualization principles –Representation of Three-Dimensional obj - Layout of views- Freehand sketching of multiple views from pictorial views of objects (Draw without using draw instruments) UNIT - II PROJECTION OF POINTS, LINES AND PLANE SURFACE 6 Orthographic projection- Principles-Principal Planes-First angle projection-projection of points. Projection of straigines (only First angle projections) inclined to both the principal planes - Determination of true lengths and trunclinations by rotating bije tmethod.											0			2	0	4	4
 To inculcate drawing practice in standardized form whenever technical drawing is needed. To expose them to existing national standards related to technical drawings. CONCEPTS AND CONVENTIONS (Not for Examination) Importance of graphics in engineering applications – Use of drafting instruments – BIS conventions andspecifications – Size, layout and folding of drawing sheets – Lettering and dimensioning. Course Outcomes (CO) CO1 To understand the fundamentals and standards of Engineering graphics CO2 To perform freehand sketching of basic geometrical constructions and multiple views of objects CO3 To understand the concept of orthographic projections of lines and plane surfaces CO4 To draw the projections of section of solids and development of surfaces CO5 To visualize and to project isometric and perspective sections of simple solids INIT - I PLANE CURVES AND FREEHAND SKETCHING 7- Basic Geometrical constructions, Curves used in engineering practices: Conics – Construction of ellipse, parabola yperbola by eccentricity method – Construction of cycloidal curves – construction of involutes of square and circ: Drawing of tangents and normal to the above curves. <i>V</i>isualization concepts and Free Hand sketching: Visualization principles –Representation of Three-Dimensional obj-Layout of views- Freehand sketching of multiple views from pictorial views of objects (Draw without using draw struments) INIT - II PROJECTION OF POINTS, LINES AND PLANE SURFACE 6 Orthographic projection- Principles-Principal Planes-First angle projection-projection of points. Projection of straignes (only First angle projections) inclined to both the principal planes - Determination of true lengths and tructionaby rotating object method. INIT - II PROJECTION OF SOLIDS 5 To projection of simple solids like prisms, pyramids, cylin	•																
 To expose them to existing national standards related to technical drawings. CONCEPTS AND CONVENTIONS (Not for Examination) Importance of graphics in engineering applications – Use of drafting instruments – BIS conventions andspecifications – Size, layout and folding of drawing sheets – Lettering and dimensioning. COUTENE OUTCOMES (CO) CO1 To understand the fundamentals and standards of Engineering graphics CO2 To perform freehand sketching of basic geometrical constructions and multiple views of objects CO3 To understand the concept of orthographic projections of lines and plane surfaces CO4 To draw the projections of section of solids and development of surfaces CO5 To visualize and to project isometric and perspective sections of simple solids INIT - I PLANE CURVES AND FREEHAND SKETCHING 7. asic Geometrical constructions, Curves used in engineering practices: Conics – Construction of ellipse, parabola yperbola by eccentricity method – Construction of cycloidal curves – construction of Three-Dimensional obj Layout of views- Freehand sketching: Visualization principles –Representation of Three-Dimensional obj Layout of views- Freehand sketching of multiple views from pictorial views of objects (Draw without using draw struments) INT - II PROJECTION OF POINTS, LINES AND PLANE SURFACE 6 Orthographic projection- Principles Principal Planes-First angle projection- projection of straignes (only First angle projections) inclined to both the principal planes - Determination of true lengths and true clinations by rotating line method and traces. Projection of planes (polygonal and circular surfaces) inclined to both the principal planes - Determination of true lengths and true clinations by rotating object method. INT - II PROJECTION OF SOLIDS 5 	🗸 To d	evelop	o grap	hic skil	lls for o	commu	nicatio	n of co	ncepts	ideas	and dea	sign of	engine	ering p	roduct	ts.	
 To expose them to existing national standards related to technical drawings. CONCEPTS AND CONVENTIONS (Not for Examination) Importance of graphics in engineering applications – Use of drafting instruments – BIS conventions andspecifications – Size, layout and folding of drawing sheets – Lettering and dimensioning. COUTEONE OUTCOMES (CO) CO1 To understand the fundamentals and standards of Engineering graphics CO2 To perform freehand sketching of basic geometrical constructions and multiple views of objects CO3 To understand the concept of orthographic projections of lines and plane surfaces CO4 To draw the projections of social and development of surfaces CO5 To visualize and to project isometric and perspective sections of simple solids INT - I PLANE CURVES AND FREEHAND SKETCHING 7. asic Geometrical constructions, Curves used in engineering practices: Conics – Construction of ellipse, parabola yperbola by eccentricity method – Construction of cycloidal curves – construction of Three-Dimensional obj Layout of views- Freehand sketching: Visualization principles –Representation of Three-Dimensional obj Layout of views- Freehand sketching of multiple views from pictorial views of objects (Draw without using draw struments) INT - II PROJECTION OF POINTS, LINES AND PLANE SURFACE 6 Orthographic projection- Principles -Principal Planes-First angle projection-projection of points. Projection of straignes (only First angle projections) inclined to both the principal planes - Determination of true lengths and true clinations by rotating object method. INT - II PROJECTION OF SOLIDS 5 To projection of simple solids like prisms, pyramids, cylinder, cone and truncated solids when the axis is inclined to ot ot simples on the principal planes by rotating object method. 	🗸 To ii	nculca	te dra	wing p	ractice	in star	dardize	ed form	n when	ever tec	chnical	drawir	ng is ne	eded.			
CONCEPTS AND CONVENTIONS (Not for Examination) ✓ Importance of graphics in engineering applications – Use of drafting instruments – BIS conventions andspecifications – Size, layout and folding of drawing sheets – Lettering and dimensioning. Course Outcomes (CO) CO1 To understand the fundamentals and standards of Engineering graphics CO2 To perform freehand sketching of basic geometrical constructions and multiple views of objects CO3 To understand the concept of orthographic projections of lines and plane surfaces CO4 To draw the projections of section of solids and development of surfaces CO5 To visualize and to project isometric and perspective sections of simple solids INIT - I PLANE CURVES AND FREEHAND SKETCHING 7- Basic Geometrical constructions, Curves used in engineering practices: Conics – Construction of ellipse, parabola yperbola by eccentricity method – Construction of cycloidal curves – construction of involutes of square and circ brawing of tangents and normal to the above curves. 7 Visualization concepts and Free Hand sketching: Visualization principles –Representation of Three-Dimensional obj. Layout of views- Freehand sketching of multiple views from pictorial views of objects (Draw without using draw istruments) 6 INT - II PROJECTION OF POINTS, LINES AND PLANE SURFACE 6 Orthographic projection- Principal Planes-First angle projection-projection of points. Projection of straignes													0				
 ✓ Importance of graphics in engineering applications – Use of drafting instruments – BIS conventions andspecifications – Size, layout and folding of drawing sheets – Lettering and dimensioning. Course Outcomes (CO) CO1 To understand the fundamentals and standards of Engineering graphics CO2 To perform freehand sketching of basic geometrical constructions and multiple views of objects CO3 To understand the concept of orthographic projections of lines and plane surfaces CO4 To draw the projections of section of solids and development of surfaces CO5 To visualize and to project isometric and perspective sections of simple solids INIT - I PLANE CURVES AND FREEHAND SKETCHING 7 Basic Geometrical constructions, Curves used in engineering practices: Conics – Construction of ellipse, parabola yperbola by eccentricity method – Construction of cycloidal curves – construction of involutes of square and circular surfaces Visualization concepts and Free Hand sketching: Visualization principles –Representation of Three-Dimensional obj: Layout of views- Freehand sketching of multiple views from pictorial views of objects (Draw without using draw nstruments) INIT - II PROJECTION OF POINTS, LINES AND PLANE SURFACE 6 Orthographic projections, Projection of planes-First angle projection-projection of points. Projection of straignes (only First angle projections) inclined to both the principal planes - Determination of true lengths and troe inclinations by rotating object method. INIT - II PROJECTION OF SOLIDS 5 												U					
andspecifications – Size, layout and folding of drawing sheets – Lettering and dimensioning. Course Outcomes (CO) CO1 To understand the fundamentals and standards of Engineering graphics CO2 To perform freehand sketching of basic geometrical constructions and multiple views of objects CO3 To understand the concept of orthographic projections of lines and plane surfaces CO4 To draw the projections of section of solids and development of surfaces CO5 To visualize and to project isometric and perspective sections of simple solids INIT - I PLANE CURVES AND FREEHAND SKETCHING 7- Basic Geometrical constructions, Curves used in engineering practices: Conics – Construction of ellipse, parabola yperbola by eccentricity method – Construction of cycloidal curves – construction of involutes of square and circ Orawing of tangents and normal to the above curves. //isualization concepts and Free Hand sketching: Visualization principles –Representation of Three-Dimensional obj- Layout of views- Freehand sketching of multiple views from pictorial views of objects (Draw without using draw nstruments) 6 Drith graphic projection- Principal Planes-First angle projection-projection of points. Projection of straig ines (only First angle projections) inclined to both the principal planes - Determination of true lengths and trucinations by rotating object method. 5 Drith graphicand by cotating object method. 5 5 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>e of dra</td> <td>fting i</td> <td>nstrum</td> <td>ents – I</td> <td>BIS co</td> <td>nventi</td> <td>ons</td> <td></td>										e of dra	fting i	nstrum	ents – I	BIS co	nventi	ons	
Course Outcomes (CO) To understand the fundamentals and standards of Engineering graphics CO2 To perform freehand sketching of basic geometrical constructions and multiple views of objects CO3 To understand the concept of orthographic projections of lines and plane surfaces CO4 To draw the projections of section of solids and development of surfaces CO5 To visualize and to project isometric and perspective sections of simple solids JNIT - I PLANE CURVES AND FREEHAND SKETCHING 7- Basic Geometrical constructions, Curves used in engineering practices: Conics – Construction of ellipse, parabola yperbola by eccentricity method – Construction of cycloidal curves – construction of involutes of square and circ Orawing of tangents and normal to the above curves. //isualization concepts and Free Hand sketching: Visualization principles –Representation of Three-Dimensional obj Layout of views- Freehand sketching of multiple views from pictorial views of objects (Draw without using draw nstruments) 6 JNIT - II PROJECTION OF POINTS, LINES AND PLANE SURFACE 6 Orthographic projection- Principles-Principal Planes-First angle projection-projection of true lengths and true inclinations by rotating line method and traces. Projection of planes (polygonal and circular surfaces) inclined to bo he principal planes - Determination of true lengths and true inclinations by rotating object method. 5 Projection of simple solids like prisms, pyramids, cylinder, cone and			•	-	-	-	U				•						
CO2 To perform freehand sketching of basic geometrical constructions and multiple views of objects CO3 To understand the concept of orthographic projections of lines and plane surfaces CO4 To draw the projections of section of solids and development of surfaces CO5 To visualize and to project isometric and perspective sections of simple solids JNIT - I PLANE CURVES AND FREEHAND SKETCHING 7- Basic Geometrical constructions, Curves used in engineering practices: Conics – Construction of ellipse, parabola typerbola by eccentricity method – Construction of cycloidal curves – construction of involutes of square and circ Orawing of tangents and normal to the above curves. //isualization concepts and Free Hand sketching: Visualization principles –Representation of Three-Dimensional obj- Layout of views- Freehand sketching of multiple views from pictorial views of objects (Draw without using draw instruments) 6 JNIT - II PROJECTION OF POINTS, LINES AND PLANE SURFACE 6 Orthographic projection- Principles-Principal Planes-First angle projection-projection of points. Projection of straigines (only First angle projections) inclined to both the principal planes - Determination of true lengths and truclinations by rotating line method and traces. Projection of planes (polygonal and circular surfaces) inclined to both the principal planes - Determination of surfaces 5 Projection of simple solids like prisms, pyramids, cylinder, cone and truncated solids when the axis is inclined to on<																	
CO2 To perform freehand sketching of basic geometrical constructions and multiple views of objects CO3 To understand the concept of orthographic projections of lines and plane surfaces CO4 To draw the projections of section of solids and development of surfaces CO5 To visualize and to project isometric and perspective sections of simple solids JNIT - I PLANE CURVES AND FREEHAND SKETCHING 7- Basic Geometrical constructions, Curves used in engineering practices: Conics – Construction of ellipse, parabola typerbola by eccentricity method – Construction of cycloidal curves – construction of involutes of square and circ Orawing of tangents and normal to the above curves. //isualization concepts and Free Hand sketching: Visualization principles –Representation of Three-Dimensional object Layout of views- Freehand sketching of multiple views from pictorial views of objects (Draw without using draw instruments) 6 INIT - II PROJECTION OF POINTS, LINES AND PLANE SURFACE 6 Orthographic projection- Principles-Principal Planes-First angle projection-projection of points. Projection of straig ines (only First angle projections) inclined to both the principal planes - Determination of true lengths and trucinations by rotating line method and traces. Projection of planes (polygonal and circular surfaces) inclined to both the principal planes of surfaces inclined to both the principal planes of surfaces inclined to both the principal planes (polygonal and circular surfaces) inclined to both the principal planes (polygonal and circular surfaces) inclined to both the pri	CO1	То	unders	stand th	ne fund	lamenta	als and	standa	rds of H	Enginee	ering g	raphics					
CO3 To understand the concept of orthographic projections of lines and plane surfaces CO4 To draw the projections of section of solids and development of surfaces CO5 To visualize and to project isometric and perspective sections of simple solids JNT - I PLANE CURVES AND FREEHAND SKETCHING 7 Basic Geometrical constructions, Curves used in engineering practices: Conics – Construction of ellipse, parabola 7 opperbola by eccentricity method – Construction of cycloidal curves – construction of involutes of square and circ 7 Orawing of tangents and normal to the above curves. 7 Visualization concepts and Free Hand sketching: Visualization principles –Representation of Three-Dimensional obj 1 Layout of views- Freehand sketching of multiple views from pictorial views of objects (Draw without using draw unstruments) 6 Drthographic projection- Principles-Principal Planes-First angle projection-projection of points. Projection of straigines (only First angle projections) inclined to both the principal planes - Determination of true lengths and tructure inclinations by rotating line method and traces. Projection of planes (polygonal and circular surfaces) inclined to bo he principal planes by rotating object method. 5 DNT - III PROJECTION OF SOLIDS 5 Projection of simple solids like prisms, pyramids, cylinder, cone and truncated solids when the axis is inclined to o 5	CO2	To	perfor	m freel	nand sl	cetchin	g of ba	sic geo	metrica	l const	ruction	ns and r	nultipl	e views	s of ob	jects	5
CO4To draw the projections of section of solids and development of surfacesCO5To visualize and to project isometric and perspective sections of simple solidsJNT - IPLANE CURVES AND FREEHAND SKETCHINGBasic Geometrical constructions, Curves used in engineering practices: Conics – Construction of ellipse, parabolatyperbola by eccentricity method – Construction of cycloidal curves – construction of involutes of square and circDrawing of tangents and normal to the above curves.//isualization concepts and Free Hand sketching: Visualization principles –Representation of Three-Dimensional obj- Layout of views- Freehand sketching of multiple views from pictorial views of objects (Draw without using drawnstruments)JNIT - IIPROJECTION OF POINTS, LINES AND PLANE SURFACEOrthographic projection- Principles-Principal Planes-First angle projection-projection of points. Projection of straigines (only First angle projections) inclined to both the principal planes - Determination of true lengths and trnclinations by rotating line method and traces. Projection of planes (polygonal and circular surfaces) inclined to bohe principal planes by rotating object method.JNIT - IIIPROJECTION OF SOLIDS5Projection of simple solids like prisms, pyramids, cylinder, cone and truncated solids when the axis is inclined to o	CO3	-					-	-					_			5	
CO5 To visualize and to project isometric and perspective sections of simple solids JNIT - I PLANE CURVES AND FREEHAND SKETCHING 7- Basic Geometrical constructions, Curves used in engineering practices: Conics – Construction of ellipse, parabola hyperbola by eccentricity method – Construction of cycloidal curves – construction of involutes of square and circ. Drawing of tangents and normal to the above curves. 7- Visualization concepts and Free Hand sketching: Visualization principles –Representation of Three-Dimensional obj. 1000000000000000000000000000000000000						=	-					_					
PLANE CURVES AND FREEHAND SKETCHING 7- Basic Geometrical constructions, Curves used in engineering practices: Conics – Construction of ellipse, parabola apperbola by eccentricity method – Construction of cycloidal curves – construction of involutes of square and circ Drawing of tangents and normal to the above curves. Visualization concepts and Free Hand sketching: Visualization principles –Representation of Three-Dimensional object uses. by eccentricity method – Construction of multiple views from pictorial views of objects (Draw without using draw nstruments) UNIT - II PROJECTION OF POINTS, LINES AND PLANE SURFACE 6 Drthographic projection- Principles-Principal Planes-First angle projection-projection of points. Projection of straig ines (only First angle projections) inclined to both the principal planes - Determination of true lengths and tructions by rotating line method and traces. Projection of planes (polygonal and circular surfaces) inclined to both the principal planes of true lengths and tructions by rotating object method. 5 DINT - III PROJECTION OF SOLIDS 5 Projection of simple solids like prisms, pyramids, cylinder, cone and truncated solids when the axis is inclined to or 5				1 0													
Basic Geometrical constructions, Curves used in engineering practices: Conics – Construction of ellipse, parabola Age of the principal planes by rotating line method and traces. Projection of planes (polygonal and circular surfaces) inclined to both the principal planes - Determination of true lengths and tr District III PROJECTION OF POINTS, LINES AND PLANE SURFACE 6 District projection - Principles -Principal Planes-First angle projection projection of true lengths and tr 6 District projection - Principles -Principal Planes - First angle projection of true lengths and tr 6 District planes by rotating line method and traces. Projection of planes (polygonal and circular surfaces) inclined to both the principal planes of the principal planes by rotating object method. 5 Projection of simple solids like prisms, pyramids, cylinder, cone and truncated solids when the axis is inclined to o 5					1	, ,			1		10113 01	simple	sonus				7.
ayperbola by eccentricity method – Construction of cycloidal curves – construction of involutes of square and circDrawing of tangents and normal to the above curves.Visualization concepts and Free Hand sketching: Visualization principles –Representation of Three-Dimensional objectLayout of views- Freehand sketching of multiple views from pictorial views of objects (Draw without using drawInstruments)JNIT - IIPROJECTION OF POINTS, LINES AND PLANE SURFACEOrthographic projection- Principles-Principal Planes-First angle projection-projection of points. Projection of straigines (only First angle projections) inclined to both the principal planes - Determination of true lengths and trnclinations by rotating line method and traces. Projection of planes (polygonal and circular surfaces) inclined to bohe principal planes by rotating object method.JNIT - IIIPROJECTION OF SOLIDS5Projection of simple solids like prisms, pyramids, cylinder, cone and truncated solids when the axis is inclined to o											<u>.</u>	C		C 1	1.		
Drawing of tangents and normal to the above curves. Visualization concepts and Free Hand sketching: Visualization principles –Representation of Three-Dimensional objects Layout of views- Freehand sketching of multiple views from pictorial views of objects (Draw without using draw instruments) VINT - II PROJECTION OF POINTS, LINES AND PLANE SURFACE 6 Orthographic projection- Principles-Principal Planes-First angle projection-projection of points. Projection of straigenes (only First angle projections) inclined to both the principal planes - Determination of true lengths and true to both the principal planes (polygonal and circular surfaces) inclined to both the principal planes (polygonal and circular surfaces) inclined to both the principal planes by rotating object method. VINT - III PROJECTION OF SOLIDS 5 Projection of simple solids like prisms, pyramids, cylinder, cone and truncated solids when the axis is inclined to o								•	•						-	-	
/isualization concepts and Free Hand sketching: Visualization principles –Representation of Three-Dimensional obj. - Layout of views- Freehand sketching of multiple views from pictorial views of objects (Draw without using draw instruments) JNIT - II PROJECTION OF POINTS, LINES AND PLANE SURFACE 6 Orthographic projection- Principles-Principal Planes-First angle projection-projection of points. Projection of straig ines (only First angle projections) inclined to both the principal planes - Determination of true lengths and tracinations by rotating line method and traces. Projection of planes (polygonal and circular surfaces) inclined to both the principal planes by rotating object method. 5 VIIT - III PROJECTION OF SOLIDS 5 Projection of simple solids like prisms, pyramids, cylinder, cone and truncated solids when the axis is inclined to o 5								•	dal cur	ves – c	onstru	ction of	t involu	ites of	square	e and	circle
Layout of views- Freehand sketching of multiple views from pictorial views of objects (Draw without using draw instruments) JNIT - II PROJECTION OF POINTS, LINES AND PLANE SURFACE 6 Orthographic projection- Principles-Principal Planes-First angle projection-projection of points. Projection of straig ines (only First angle projections) inclined to both the principal planes - Determination of true lengths and tracinations by rotating line method and traces. Projection of planes (polygonal and circular surfaces) inclined to both the principal planes by rotating object method. 5 VIIT - III PROJECTION OF SOLIDS 5 Projection of simple solids like prisms, pyramids, cylinder, cone and truncated solids when the axis is inclined to o 5	-	-															
INIT - II PROJECTION OF POINTS, LINES AND PLANE SURFACE 6 Orthographic projection- Principles-Principal Planes-First angle projection-projection of points. Projection of straig ines (only First angle projections) inclined to both the principal planes - Determination of true lengths and tr nclinations by rotating line method and traces. Projection of planes (polygonal and circular surfaces) inclined to bo he principal planes by rotating object method. JNIT - III PROJECTION OF SOLIDS 5 Projection of simple solids like prisms, pyramids, cylinder, cone and truncated solids when the axis is inclined to o			•				•		-	•	•						•
JNIT - IIPROJECTION OF POINTS, LINES AND PLANE SURFACE6Orthographic projection- Principles-Principal Planes-First angle projection-projection of points. Projection of straig ines (only First angle projections) inclined to both the principal planes - Determination of true lengths and tr nclinations by rotating line method and traces. Projection of planes (polygonal and circular surfaces) inclined to bo he principal planes by rotating object method.5JNIT - IIIPROJECTION OF SOLIDS5Projection of simple solids like prisms, pyramids, cylinder, cone and truncated solids when the axis is inclined to o5	- Layout of v	views-	Freel	nand sk	tetchin	g of m	ultiple	views f	rom pi	ctorial	views	of objec	ets (Dra	aw wit	hout u	sing	drawi
Orthographic projection- Principles-Principal Planes-First angle projection-projection of points. Projection of straigines (only First angle projections) inclined to both the principal planes - Determination of true lengths and trnclinations by rotating line method and traces. Projection of planes (polygonal and circular surfaces) inclined to bohe principal planes by rotating object method.UNIT - IIIPROJECTION OF SOLIDS5Projection of simple solids like prisms, pyramids, cylinder, cone and truncated solids when the axis is inclined to o	nstruments)																
ines (only First angle projections) inclined to both the principal planes - Determination of true lengths and tr nclinations by rotating line method and traces. Projection of planes (polygonal and circular surfaces) inclined to bo he principal planes by rotating object method. JNIT - III PROJECTION OF SOLIDS 5 Projection of simple solids like prisms, pyramids, cylinder, cone and truncated solids when the axis is inclined to o	UNIT - II	PR	OJEC	CTION	OF P	OINTS	5, LINI	ES AN	D PLA	NE SU	JRFA(CE					6+
nclinations by rotating line method and traces. Projection of planes (polygonal and circular surfaces) inclined to be he principal planes by rotating object method. JNIT - III PROJECTION OF SOLIDS 5 Projection of simple solids like prisms, pyramids, cylinder, cone and truncated solids when the axis is inclined to o	Orthographic	c proje	ction-	- Princi	ples-P	rincipa	l Plane	s-First	angle p	rojecti	on-pro	jection	of poir	nts. Pro	jectio	n of	straigl
he principal planes by rotating object method. UNIT - III PROJECTION OF SOLIDS 5 Projection of simple solids like prisms, pyramids, cylinder, cone and truncated solids when the axis is inclined to o	•		<u> </u>						· ·	<u> </u>					•		
JNIT - III PROJECTION OF SOLIDS 5 Projection of simple solids like prisms, pyramids, cylinder, cone and truncated solids when the axis is inclined to o 5		-	-				•	ection	of plan	es (pol	ygonal	and cir	cular s	urfaces	s) incli	ned	to bot
Projection of simple solids like prisms, pyramids, cylinder, cone and truncated solids when the axis is inclined to o																	-
																	5+
of the principal planes when the solid is simply suspended by rotating object method.													when the	he axis	is inc	lined	to on
	of the princip	pal pla	nes w	then the	e solid	is simp	bly susp	bended	by rota	iting of	oject m	ethod.					

5+12

Sectioning of simple solids like prisms, pyramids, cylinder, cone in simple vertical position when the cutting plane isinclined to the one of the principal planes and perpendicular to the other – obtaining true shape of section. Development of lateral surfaces of simple and sectioned solids – Prisms, pyramids cylinders and cones - Graphically finding the shortest distance connecting two points.

UNIT - V ISOMETRIC AND PERSPECTIVE PROJECTIONS

Principles of isometric projection – isometric scale –Isometric projections and isometric views of simple solids and truncated solids – Prisms, pyramids, cylinders, cones- combination of two solid objects in simple vertical positions. Perspective projection of simple solids-Prisms, pyramids and cylinders by visual ray method.

6+12

Text Books:

- Natarajan K.V., "A text book of Engineering Graphics", Dhanalakshmi Publishers, Chennai, Twenty ninth edition 2017
- 2. Venugopal K. and Prabhu Raja V., "Engineering Graphics", New Age International (P) Limited, 2011.
- 3. S. Ramachandran and K. Pandian, "Engineering Graphics" Airwalk Publications; 8th edition 2014

Reference Books:

- 1. Bhatt N.D. and Panchal V.M., "Engineering Drawing", Charotar Publishing House, 53rd Edition, 2019.
- 2. Basant Agarwal and Agarwal C.M., "Engineering Drawing", Tata McGraw Hill Publishing Company Limited, New Delhi, 2018.
- 3. Gopalakrishna K.R., "Engineering Drawing" (Vol. I&II combined), Subhas Stores, Bangalore, 2018.
- 4. Luzzader, Warren.J. and Duff, John M., "Fundamentals of Engineering Drawing with an introduction to Interactive Comput er Graphics for Design and Production, Eastern Economy Edition, Prentice Hall of India Pvt. Ltd, New Delhi, 2005.
- 5. N S Parthasarathy and Vela Murali, "Engineering Graphics", Oxford University, Press, New Delhi, 2015.
- 6. Shah M.B., and Rana B.C., "Engineering Drawing", Pearson, 2nd Edition, 2009.

Course Outcomes		Program Outcomes																	Pro Spe Oute	gram ecific comes
	1	2	3	4	5	6	7	8	9	10	11	12	1	2						
CO1	3	2	1	2	1	1	-	-	3	3	2	3	1	-						
CO2	3	1	2	2	1	1	-	-	3	3	2	3	1	-						
CO3	3	1	1	3	1	1	-	-	3	3	2	3	1	-						
CO4	3	1	1	3	1	1	-	-	3	3	2	3	1	-						
CO5	3	1	2	3	1	1	-	-	3	3	2	3	1	-						

GE1107	Problem Solving and Python Programming Laboratory (Common for all branches of B.E. /B. Tech Programmes)	L	Т	Р	С
--------	--	---	---	---	---

bjectives												0			<u> </u>	
✓ To	write, te															
	implem	•		0				nd loop	os.							
	e functio															
	present of and v						tuples	, and di	ctionai	nes.						
Course Outco				1/10/110	28 III I J	mon.										
	o develo	,	ole con	sole an	plicatio	ons thre	ough p	vthon v	vith co	ntrol st	ructure	and fur	ctio	ons		
	o under			-	-										nting	
	ompour								~, r	~,			r		8	
CO3 R	ead and	write	data fro	om/to fi	iles in l	Python	and ap	plication	ons of	python.						
1. Write an al	gorithm	, draw	flowch	ıart illu	stratin	g mail	merge	concep	ot.							
2. Write an al	gorithm	, draw	flowch	iart and	l write	pseudo	code :	for a re	al life	or scier	tific or	technic	cal p	orobl	ems.	
3. Scientific p			0 0			•	-	•								
✓ Arms	•		-													
4. Simple pro	-	-														
✓ Trans	-		-						natrix							
5. Program to	-	-		ons and	l recurs	sive fu	nctions									
6. Utilizing 'I	Junctior	na' in D	wthon													
-			•			0										
✓ Find m	nean, me	edian, r	node fo	-				in a lis	t.							
✓ Find m✓ Write a	nean, me a functio	edian, r on dup	node fo to find	all dup	olicates	in the	list.									
 ✓ Find m ✓ Write a ✓ Write a 	nean, me a functio a functio	edian, r on dup on uniq	node fo to find jue to fi	all dup	licates the uni	in the que ele	list. ements									
 ✓ Find m ✓ Write a ✓ Write a ✓ Write f 	nean, me a function a function function	edian, r on dup on uniq to con	node fo to find ue to fi npute g	all dup ind all t gcd, lcn	olicates the uni n of tw	in the que ele o numl	list. ements bers.	of a lis	t.							
 ✓ Find m ✓ Write a ✓ Write a ✓ Write f 7.Demonstrate 	nean, me a function a function function e the use	edian, r on dup on uniq to con e of Di	node fo to find ue to fi npute g ctionar	all dup ind all t gcd, lcn ies and	blicates the uni n of tw tuples	in the que ele o numl with s	list. ements bers. ample j	of a lis prograi	t.							
 ✓ Find m ✓ Write a ✓ Write a ✓ Write f 7.Demonstrate 8.Implement \$ 	hean, me a function function e the use Searchin	edian, r on dup on uniq to con e of Di- ng Ope	node fo to find ue to fi npute g ctionar rations	all dup ind all f gcd, lcn ies and : Linea	olicates the uni n of tw tuples r and E	in the que ele o numl with s Binary a	list. ements bers. ample j Search.	of a lis prograi	t. ns.							
 ✓ Find m ✓ Write a ✓ Write a ✓ Write f 7.Demonstrate 8.Implement \$ 9.To sort the \$ 	hean, me a function function e the use Searchin	edian, r on dup on uniq to con e of Di- ng Ope bers us	node fo to find ue to fi npute g ctionar rations sing: Se	all dup ind all t gcd, lcn ies and : Linea	olicates the uni n of tw tuples r and E n, Merg	in the que ele o numb with s Binary a ge sort a	list. ements bers. ample j Search. and Ins	of a lis program ertion	t. ns. Sort.	ents						
 ✓ Find m ✓ Write a ✓ Write a ✓ Write f 7.Demonstrate 8.Implement \$ 9.To sort the \$ 10.Find the m 	hean, me a function function e the use Searchin fn' num	edian, r on dup on uniq to com e of Di- ng Ope bers us uent w	node fo to find ue to fi npute g ctionar rations sing: Se ords in	all dup ind all gcd, lcn ies and : Linea election a text	olicates the uni n of tw tuples r and E n, Merg	in the que ele o numb with s Binary a ge sort a	list. ements bers. ample j Search. and Ins	of a lis program ertion	t. ns. Sort.	ents.						
 ✓ Find m ✓ Write a ✓ Write a ✓ Write f 7.Demonstrate 8.Implement \$ 9.To sort the \$ 10.Find the m 11.Demonstrate 	hean, me a function function e the use Searchin fn' num host freq ate Exce	edian, r on dup on uniq to con e of Di- ng Ope bers us uent w ptions	node fo to find ue to fi npute g ctionar rations sing: Se ords in in Pyth	all dup ind all f cd, lcn ies and : Linea election a text non.	olicates the uni n of tw tuples r and E n, Merg of file	in the que ele o numl with s Binary g ge sort a using c	list. ements bers. ample p Search and Ins comman	of a lis program ertion	t. ns. Sort.	ents.						
 ✓ Find m ✓ Write a ✓ Write a ✓ Write f 7.Demonstrate 8.Implement \$ 9.To sort the \$ 10.Find the m 11.Demonstrate 	hean, me a function function e the use Searchin fn' num host freq ate Exce	edian, r on dup on uniq to con e of Di- ng Ope bers us uent w ptions	node fo to find ue to fi npute g ctionar rations sing: Se ords in in Pyth	all dup ind all f cd, lcn ies and : Linea election a text non.	olicates the uni n of tw tuples r and E n, Merg of file	in the que ele o numl with s Binary g ge sort a using c	list. ements bers. ample p Search and Ins comman	of a lis program ertion	t. ns. Sort.		al Perio	ods:	6	60 P	FRIO	DS
 ✓ Find m ✓ Write a ✓ Write a ✓ Write f 7.Demonstrato 8.Implement \$ 9.To sort the \$ 10.Find the m 11.Demonstration 12.Application 	hean, me a function function e the use Searchin fn' num host freq nte Exce ns: Impl	edian, r on dup on uniq to con e of Di- ng Ope bers us uent w ptions lement	node fo to find ue to fi npute g ctionar rations sing: Se ords in in Pyth ing GU	all dup ind all f ged, len ies and : Linea election a text non. II using	olicates the uni n of tw tuples r and E n, Merg of file	in the que ele o numl with s Binary b ge sort a using c pygan	list. ements bers. ample p Search. and Ins comman ne.	of a lis program ertion a nd line	t. ns. Sort.		al Perio	ods:	6	60 P	ERIO	DS
 ✓ Find m ✓ Write a ✓ Write a ✓ Write f 7.Demonstrate 8.Implement \$ 9.To sort the \$ 10.Find the m 11.Demonstrate 12.Applicatio 	hean, me a function function e the use Searchin in' num ost freq nte Exce ns: Impl	edian, r on dup on uniq to con e of Di- ng Ope bers us uent w ptions lement	mode for to find ue to find npute g ctionar rations sing: Se ords in in Pyth ing GU	all dup ind all f gcd, lcn ies and : Linea election a text non. JI using BATC	blicates the uni n of tw tuples r and E n, Merg of file g turtle,	in the que ele o numl with s Binary a ge sort a using c pygan 30 STU	list. ements bers. ample p Search. and Ins comman ne.	of a lis program ertion a nd line	t. ns. Sort.		al Perio	ods:	6	60 Pl	ERIO	DS
 ✓ Find m ✓ Write a ✓ Write a ✓ Write f 7.Demonstrate 8.Implement \$ 9.To sort the \$ 10.Find the m 11.Demonstrate 12.Applicatio 	hean, me a function function e the use Searchin fn' num host freq nte Exce ns: Impl	edian, r on dup on uniq to con e of Di- ng Ope bers us uent w ptions lement	mode for to find ue to find npute g ctionar rations sing: Se ords in in Pyth ing GU	all dup ind all f gcd, lcn ies and : Linea election a text non. JI using BATC	blicates the uni n of tw tuples r and E n, Merg of file g turtle, H OF 3	in the que ele o numl with s Binary a ge sort a using c pygan 30 STU	list. ements bers. ample p Search. and Ins comman ne.	of a lis program ertion a nd line	t. ns. Sort.		al Perio	ods:				DS
 ✓ Find m ✓ Write a ✓ Write a ✓ Write f 7.Demonstrate 8.Implement \$ 9.To sort the \$ 10.Find the m 11.Demonstration 12.Application LIST OF EQ ✓ Pytho 	hean, me a function function e the use Searchin in' num ost freq nte Exce ns: Impl	edian, r on dup on uniq to con e of Di- ng Ope bers us uent w ptions lement	mode for to find ue to find npute g ctionar rations sing: Se ords in in Pyth ing GU	all dup ind all f gcd, lcn ies and : Linea election a text non. JI using BATC	blicates the uni n of tw tuples r and E n, Merg of file g turtle, g turtle, H OF 3	in the que ele o numl with s Binary a ge sort a using c pygan 30 STU	list. ements bers. ample J Search. and Ins comman ne.	of a lis program ertion a nd line	t. ns. Sort.		al Perio	ods:		Prog	gram	DS
 ✓ Find m ✓ Write a ✓ Write a ✓ Write f 7.Demonstrate 8.Implement S 9.To sort the S 10.Find the m 11.Demonstrate 12.Applicatio LIST OF EQ ✓ Pytho 	hean, me a function function e the use Searchin in' num ost freq nte Exce ns: Impl	edian, r on dup on uniq to con e of Di- ng Ope bers us uent w ptions lement	mode for to find ue to find npute g ctionar rations sing: Se ords in in Pyth ing GU	all dup ind all f gcd, lcn ies and : Linea election a text non. JI using BATC	blicates the uni n of tw tuples r and E n, Merg of file g turtle, g turtle, H OF 3	in the que ele o numl with s Binary a ge sort a using c pygan 30 STU	list. ements bers. ample p Search. and Ins comman ne.	of a lis program ertion a nd line	t. ns. Sort.		al Perio	ods:]	Prog Spe		DS
 ✓ Find m ✓ Write a ✓ Write a ✓ Write f 7.Demonstrate 8.Implement \$ 9.To sort the \$ 10.Find the m 11.Demonstration 12.Application LIST OF EQ ✓ Pytho 	hean, me a function function e the use Searchin in' num ost freq nte Exce ns: Impl	edian, r on dup on uniq to con e of Di- ng Ope bers us uent w ptions lement	node fo to find ue to find pute g ctionar rations sing: Se ords in in Pyth ing GU OR A I for Wi	all dup ind all f gcd, lcn ies and : Linea election a text non. JI using BATC	olicates the uni n of tw tuples r and E n, Merg of file g turtle, g turtle, <u>H OF 3</u> /Linux	in the que ele o numl with s Binary i ge sort a using c pygan 30 STU	list. ements bers. ample J Search. and Ins comman ne.	of a lis program ertion a nd line FS	t. ns. Sort. argum	Tota]	Prog Spe Outc	gram cific	DS
 ✓ Find m ✓ Write a ✓ Write a ✓ Write f 7.Demonstrate 8.Implement S 9.To sort the S 10.Find the m 11.Demonstrate 12.Applicatio LIST OF EQ ✓ Pytho 	ean, me a function function e the use Searchin in' num in' num inost freq nte Exce ns: Impl UIPMI on 3 inte	edian, r on dup on uniq to com e of Di- ng Ope bers us uent w ptions lement: ENT For rpreter	mode for to find ue to find npute g ctionar rations sing: Se ords in in Pyth ing GU	all dup ind all f gcd, len ies and : Linea election a text non. J using BATC indows	blicates the uni n of tw tuples r and E n, Merg of file g turtle, g turtle, H OF 3	in the que ele o numl with s Binary a ge sort a using c pygan 30 STU	list. ements bers. ample J Search. and Ins comman ne. JDENT	of a lis program ertion a nd line	t. ns. Sort.		al Perio	ods:] (Prog Spe	gram cific comes	
 ✓ Find m ✓ Write a ✓ Write a ✓ Write f 7.Demonstrate 8.Implement S 9.To sort the S 10.Find the m 11.Demonstrate 12.Application LIST OF EQ ✓ Pytho Course Outcomes 	ean, me a function function e the use Searchin 'n' num ost freq ns: Impl DUIPMI on 3 inte	edian, r on dup on uniq to com e of Di- ng Ope bers us uent w ptions lement ENT F rpreter 2	node fo to find ue to find pute g ctionar rations sing: Se ords in in Pyth ing GU OR A I for Wi	all dup ind all f gcd, len ies and : Linea election a text non. J using BATC indows	blicates the uni n of tw tuples r and E , Merg of file g turtle, turtle, H OF . /Linux Pr 5	in the que ele o numl with s Binary i ge sort a using c pygan 30 STU	list. ements bers. ample J Search. and Ins comman ne. JDENT	of a lis program ertion a nd line FS omes 8	t. ns. Sort. argum	Tot:		12		Prog Spe Outc 1	gram cific comes 2	DS

- 1. Reema Thareja, "Python Programming using problem solving approach", Oxford University Press, 2nd edition, 2018.
- 2. Allen B. Downey, "Think Python: How to Think Like a Computer Scientist", Second Edition, Updated for Python 3, Shroff/O'Reilly Publishers, 2016.
- **3**. Shroff "Learning Python: Powerful Object-Oriented Programming; Fifth edition, 2013. David M.Baezly "Python Essential Reference". Addison-Wesley Professional; Fourth edition, 2009.
- 4. David M. Baezly "Python Cookbook" O'Reilly Media; Third edition (June 1, 2013)
- 5. <u>http://www.edx.org</u>

	Physics and chemistry laboratory	L	Т	Р	C
		0	0	4	2
Objectives					
The stuc	lents will be trained to perform experiments to study the following.				
	The Properties of Matter				
\checkmark	The Optical properties, Characteristics of Lasers & Optical Fibre				
✓ J	Electrical & Thermal properties of Materials				
✓ J	Enable the students to enhance accuracy in experimental measurements.				
	Γο make the student to acquire practical skills in the determination of water				
	qualityparametersthrough volumetric analysis				
✓]	nstrumental method of analysis such as potentiometry, conductometry and pHmetry	у			
Course Ou	tcomes (CO)				
CO1	Able to understand the concept about the basic properties of matter like stress				
	moduli. Able to understand the procedure to estimate the amount of dissolved	oxyger	n prese	ent in	the
	water.		•		
CO2	water. Able to understand the concept of optics like reflection, refraction, diffraction		•		
CO2	water. Able to understand the concept of optics like reflection, refraction, diffractio grating.	on by u	sing sj	pectro	me
CO2	water.Able to understand the concept of optics like reflection, refraction, diffractiograting.Able to understand the concept about measuring the conductance of strong	on by u	sing sj	pectro	me
	 water. Able to understand the concept of optics like reflection, refraction, diffraction grating. Able to understand the concept about measuring the conductance of strong and mixture of acids by using conductivity meter. 	on by u acid ar	sing sj nd stro	pectro	me
CO2 CO3	water. Able to understand the concept of optics like reflection, refraction, diffraction grating. Able to understand the concept about measuring the conductance of strong and mixture of acids by using conductivity meter. Able to understand the thermal properties of solids and to calculate thermal conductance of solids and to calculate thermal cond the calculat	on by u acid ar ductivit	sing sj nd stro	pectro ong ba bad	se
	 water. Able to understand the concept of optics like reflection, refraction, diffraction grating. Able to understand the concept about measuring the conductance of strong and mixture of acids by using conductivity meter. Able to understand the thermal properties of solids and to calculate thermal conductor. Able to understand the principle and procedure involved in the analysis. 	on by u acid ar ductivit	sing sj nd stro	pectro ong ba bad	se
CO3	 water. Able to understand the concept of optics like reflection, refraction, diffraction grating. Able to understand the concept about measuring the conductance of strong and mixture of acids by using conductivity meter. Able to understand the thermal properties of solids and to calculate thermal conductor. Able to understand the principle and procedure involved in the amin the given sample of water. 	on by u acid ar ductivit	sing sj nd stro zy of a of chlo	pectro ong ba bad	se
	 water. Able to understand the concept of optics like reflection, refraction, diffraction grating. Able to understand the concept about measuring the conductance of strong and mixture of acids by using conductivity meter. Able to understand the thermal properties of solids and to calculate thermal condictor. Able to understand the principle and procedure involved in the amin the given sample of water. Able to understand the concept of microscope and its applications in determining 	acid ar ductivit nount o	sing sj nd stro zy of a of chlo	pectro ong ba bad	se
CO3 CO4	 water. Able to understand the concept of optics like reflection, refraction, diffraction grating. Able to understand the concept about measuring the conductance of strong and mixture of acids by using conductivity meter. Able to understand the thermal properties of solids and to calculate thermal condicional conductor. Able to understand the principle and procedure involved in the aniin the given sample of water. Able to understand the concept of microscope and its applications in determining Able to understand the concept of determining the emf values by using potention 	acid ar ductivit nount o	sing sj nd stro zy of a of chlo	pectro ong ba bad	se
CO3	 water. Able to understand the concept of optics like reflection, refraction, diffraction grating. Able to understand the concept about measuring the conductance of strong and mixture of acids by using conductivity meter. Able to understand the thermal properties of solids and to calculate thermal condicionation conductor. Able to understand the principle and procedure involved in the amin the given sample of water. Able to understand the concept of microscope and its applications in determining Able to understand the particle size of poly crystalline solids. 	on by u acid ar ductivit nount o g the m meter.	sing sj nd stro y of a of chlo oduli.	pectro ong ba bad oridep	me se reso
CO3 CO4	 water. Able to understand the concept of optics like reflection, refraction, diffraction grating. Able to understand the concept about measuring the conductance of strong and mixture of acids by using conductivity meter. Able to understand the thermal properties of solids and to calculate thermal condicional conductor. Able to understand the principle and procedure involved in the aniin the given sample of water. Able to understand the concept of microscope and its applications in determining Able to understand the concept of determining the emf values by using potention 	on by u acid ar ductivit nount o g the m meter.	sing sj nd stro y of a of chlo oduli.	pectro ong ba bad oridep	me se rese

✓ Python 3 interpreter for Windows/Linux

LIST OF EXPERIMENTS – PHYSICS

(A minimum of 5 experiments to be performed from the given list)

- 1. Determination of Young's modulus of the material of the given beam by Non-uniform bending method.
- 2. Determination of rigidity modulus of the material of the given wire using torsion pendulum.
- 3. Determination of wavelength of mercury spectra using Spectrometer and grating.
- 4. Determination of dispersive power of prism using Spectrometer.
- 5. (a) Determination of wavelength and particle size using a laser.
 - (b) Determination of numerical aperture and acceptance angle of an optical fibre.
 - (c) Determination of width of the groove of compact disc using laser.
- 6. Determination of Young's modulus of the material of the given beam by uniform bending method.
- 7. Determination of energy band gap of the semiconductor.
- 8. Determination of coefficient of thermal conductivity of the given bad conductor using Lee's disc.

DEMONSTRATION EXPERIMENT

1. Determination of thickness of a thin sheet / wire – Air wedge method

LIST OF EXPERIMENTS – CHEMISTRY

(A minimum of 6 experiments to be performed from the given list)

- 1. Estimation of HCl using Na2CO3 as primary standard and determination of alkalinity in water sample.
- 2. Determination of total, temporary & permanent hardness of water by EDTA method.
- 3. Determination of DO content of water sample by Winkler's method.
- 4. Determination of chloride content of water sample by argentometric method.
- 5. Estimation of copper content of the given solution by Iodometry.
- 6. Determination of strength of given hydrochloric acid using pH meter.
- 7. Determination of strength of acids in a mixture of acids using conductivity meter.
- 8. Estimation of iron content of the given solution using potentiometer.
- 9. Determination of molecular weight of polyvinyl alcohol using Ostwald viscometer.
- 10. Conductometric titration of strong acid vs strong base.

DEMONSTRATION EXPERIMENTS

Estimation of iron content of the water sample using spectrophotometer (1, 10- Phenanthroline / thiocyanatemethod). Estimation of sodium and potassium present in water using flame photometer.

Course Outcomes					P	rogram	n Outco	omes					Spe	gram ecific comes
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	1	2	2	2	1	1	1	3	2	2	3	2	2
CO2	3	1	2	1	1	1	1	1	2	1	1	2	2	2
CO3	3	1	2	1	2	2	2	1	2	1	1	1	2	2
CO4	3	2	1	1	2	1	1	1	2	1	1	2	2	1
CO5	3	2	1	1	1	2	2	1	2	1	2	1	2	1

HS1201	Professional English	L	Т	Р	C
		3	0	0	3
Objectives					
	se prepares second semester engineering and Technology students to:				
	Develop strategies and skills to enhance their ability to read and comprehend				
	ngineering and technology texts. oster their ability to write convincing job applications and effective reports.				
	bevelop their speaking skills to make technical presentations, participate in group dis	scussion	ne		
	trengthen their listening skill which will help them comprehend lectures and talks			sof	
	pecialization.				
Course Out	tcomes (CO)				
CO1	Speak clearly, confidently, comprehensibly, and communicate with one or many appropriate communicative strategies.				
CO2	Write cohesively and coherently and flawlessly avoiding grammatical errors, using range, organizing their ideas logically on a topic.	ng a wi	devoca	ubular	ý
CO3	Read different genres of texts adopting various reading strategies.				
CO4	Listen/view and comprehend different spoken discourses/excerpts in different acc	cents			
CO5	Identify topics and formulate questions for productive inquiry				
UNIT - I	INTRODUCTION TO PROFESSIONAL ENGLISH				9
	cwspapers- writing- purpose statements – extended definitions – writing in	istructic	ons –	спеск	list
ecommenda agreement - UNIT - II Listening-L participants and speed 1 foreign exp Developme UNIT - III Listening – pronunciatic (GRE/IELT	ewspapers- Writing- purpose statements – extended definitions – writing in ations- Vocabulary Development- technical vocabulary Language Development compound words. READING AND STUDY SKILLS istening Comprehension of a discussion on a technical topic of common integreating - Paragraphing- writing- istening Comprehension of a discussion on a technical topic of common integreating - Paragraphing- Writing- ressions in Use, homonyms, homophones, homographs- easily confused works merical adjectives. TECHNICAL WRITING AND GRAMMAR Istening to conversation – effective use of words and their sound aspects on - Speaking – mechanics of presentations -Reading: Reading longer texts for of S practice tests); Writing-	erest by Practivelopm ords La s, stress detailed cabulary	y three ce in o eent: I anguag s, into under y Deve	bject e or fo chunk mport ge nation rstandi elopme	ver our ing ant & ng. ent-
ecommenda agreement - UNIT - II Listening-L participants and speed 1 Coreign exp Developme UNIT - III Listening – pronunciatio GRE/IELT sequence wo	ations- Vocabulary Development- technical vocabulary Language Development compound words. READING AND STUDY SKILLS istening Comprehension of a discussion on a technical topic of common integration of a discussion on a technical topic of common integrating - Paragraphing- Writing- interpreting charts, graphs- Vocabulary Developments in Use, homonyms, homophones, homographs- easily confused we nt- impersonal passive voice, numerical adjectives. TECHNICAL WRITING AND GRAMMAR Istening to conversation – effective use of words and their sound aspects on - Speaking – mechanics of presentations -Reading: Reading longer texts for of S practice tests); Writing- Describing a process, use of sequence words- Vocords- Informal vocabulary and formal Substitutes-Misspelled words. Language Development	erest by Practivelopm ords La s, stress detailed cabulary	y three ce in o eent: I anguag s, into under y Deve	bject e or fo chunk mport ge nation rstandi elopme	ver our ing ant & ng.
recommenda agreement - UNIT - II Listening-L participants and speed r foreign exp Developme UNIT - III Listening – pronunciatio (GRE/IELT sequence wo sentences ar	ations- Vocabulary Development- technical vocabulary Language Development compound words. READING AND STUDY SKILLS istening Comprehension of a discussion on a technical topic of common integreating - Development videos)Speaking – describing a process- Reading reading - Paragraphing- Writing- interpreting charts, graphs- Vocabulary Developments in Use, homonyms, homophones, homographs- easily confused we nt- impersonal passive voice, numerical adjectives. TECHNICAL WRITING AND GRAMMAR Istening to conversation – effective use of words and their sound aspects for a speaking – mechanics of presentations -Reading: Reading longer texts for a speaking – mechanics of presentations -Reading: Reading longer texts for a speaking – mechanics of presentations -Reading: Reading longer texts for a speaking – mechanics of presentations -Reading: Reading longer texts for a speaking – mechanics of presentations -Reading: Reading longer texts for a speaking – mechanics of presentations -Reading: Reading longer texts for a speaking – mechanics of presentations -Reading: Reading longer texts for a speaking – mechanics of presentations -Reading: Reading longer texts for a speaking – mechanics of presentations -Reading: Reading longer texts for a speaking – mechanics of presentations -Reading: Reading longer texts for a speaking – mechanics of presentations -Reading: Reading longer texts for a speaking – mechanics of presentations -Reading: Reading longer texts for a speaking – mechanics of presentations -Reading: Reading longer texts for a speaking – mechanics of presentations -Reading: Reading longer texts for a speaking – mechanics of presentations -Reading: Reading longer texts for a speaking – mechanics of presentations -Reading: Reading longer texts for a speaking – mechanics of presentations -Reading: Reading longer texts for a speaking – mechanics of presentations -Reading: Reading longer texts for a speaking – m	erest by Practivelopm ords La s, stress detailed cabulary	y three ce in o eent: I anguag s, into under y Deve	bject e or fo chunk mport ge nation rstandi elopme	ver Our ing ant & ng. ent- led
recommenda agreement - UNIT - II Listening-L participants and speed n foreign exp Developme UNIT - III Listening – pronunciatio (GRE/IELT sequence wo sentences ar UNIT - IV Listening – assertivenes email etique issue based clauses- if co UNIT - V Listening: E group discus	ations- Vocabulary Development- technical vocabulary Language Development compound words. READING AND STUDY SKILLS .istening Comprehension of a discussion on a technical topic of common into (real life as well as online videos)Speaking – describing a process- Reading reading - Paragraphing- Writing- interpreting charts, graphs- Vocabulary Dev pressions in Use, homonyms, homophones, homographs- easily confused we nt- impersonal passive voice, numerical adjectives. TECHNICAL WRITING AND GRAMMAR Istening to conversation – effective use of words and their sound aspects on - Speaking – mechanics of presentations -Reading: Reading longer texts for of S practice tests); Writing- Describing a process, use of sequence words- Voc ords- Informal vocabulary and formal Substitutes-Misspelled words. Language Dev ad Ellipsis. REPORT WRITING Model debates & documentaries and making notes. Speaking – expressing ag s in expressing Opinions-Reading: Technical reports, advertisements and minutes ette- job application – cover letter –Résumé preparation (via email and hard copy) essaysVocabulary Development- finding suitable synonyms-paraphrasing- La onditionals. GROUP DISCUSSION AND JOBAPPLICATIONS Extensive Listening. (radio plays, rendering of poems, audio books and others) Spe ssion - Reading: Extensive Reading (short stories, novels, poetry and others)– Writ	erest by Practivelopm ords La s, stress detailed abulary evelopm greements of mea)- analy nguage eaking – ting rep	y three ce in c ient: I anguag s, into under Deve nent- e nt/disag eting - tical e Deve	e or fe chunk mport ge nation standi elopme greeme Writi ssays lopme	ver our ing ant & mg. ent- led () () () () () () () () () ()
recommenda agreement - UNIT - II Listening-L participants and speed n foreign exp Developme UNIT - III Listening – pronunciatic (GRE/IELT, sequence wo sentences ar UNIT - IV Listening – assertivenes email etique issue based clauses- if c UNIT - V Listening: E group discus meeting- acc	ations- Vocabulary Development- technical vocabulary Language Development compound words. READING AND STUDY SKILLS istening Comprehension of a discussion on a technical topic of common into (real life as well as online videos)Speaking – describing a process- Reading reading - Paragraphing- Writing- interpreting charts, graphs- Vocabulary Dev pressions in Use, homonyms, homophones, homographs- easily confused words interpreting charts, graphs- Vocabulary Dev pressions in Use, homonyms, homophones, homographs- easily confused words int- impersonal passive voice, numerical adjectives. TECHNICAL WRITING AND GRAMMAR listening to conversation – effective use of words and their sound aspects on - Speaking – mechanics of presentations -Reading: Reading longer texts for of S practice tests); Writing- Describing a process, use of sequence words- Voc ords- Informal vocabulary and formal Substitutes-Misspelled words. Language Dev ad Ellipsis. REPORT WRITING Model debates & documentaries and making notes. Speaking – expressing ag s in expressing Opinions-Reading: Technical reports, advertisements and minutes ette- job application – cover letter –Résumé preparation (via email and hard copy) essaysVocabulary Development- finding suitable synonyms-paraphrasing- La onditionals. GROUP DISCUSSION AND JOBAPPLICATIONS Extensive Listening. (radio plays, rendering of poems, audio books and others) Spe	erest by Practivelopm ords La s, stress detailed abulary evelopm greements of mea)- analy nguage eaking – ting rep	y three ce in c ient: I anguag s, into under Deve nent- e nt/disag eting - tical e Deve	e or fe chunk mport ge nation standi elopme greeme Writi ssays lopme	ver your ing ant & mg. ent- led y ing- and ng- g in s of

Text Books:

- 1. Board of editors. Fluency in English a Course book for Engineering and Technology. Orient Blackswan, Hyderabad: 2020.
- 2. Barun K Mitra, Effective Technical Communication Oxford University Press: 2006.
- Sudharshana.N.P and Saveetha. C. English for Technical Communication. Cambridge University Press: New Delhi, 2016

Reference Books:

- 1. Raman, Meenakshi and Sharma, Sangeetha- Technical Communication Principles and Practice. Oxford University Press: New Delhi,2014.
- 2. Kumar, Suresh. E. Engineering English. Orient Blackswan: Hyderabad, 2015
- 3. Booth-L. Diana, Project Work, Oxford University Press, Oxford: 2014.
- 4. Grussendorf, Marion, English for Presentations, Oxford University Press, Oxford: 2007
- 5. Means, L. Thomas and Elaine Langlois, English & Communication for Colleges. Cengage Learning, USA: 2007.
- 6. Caroline Meyer & Bringi dev, Communicating for Results Oxford University Press: 2021.
- 7. Aruna Koneru, Professional Speaking Skills, Oxford University Press :2015.

Course Outcomes			Program Specific Outcomes											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	0	0	3	0	0	3	0	0	3	0	0	3	1	2
CO2	0	0	0	0	0	0	0	0	0	0	0	0	1	2
CO3	3	0	1	3	0	1	3	0	1	3	0	1	1	2
CO4	1	0	2	1	0	2	1	0	2	1	0	2	1	2
CO5	1	0	1	1	0	1	1	0	1	1	0	1	1	2

3441000					
MA1202	Engineering Mathematics – II (Common to branches of B.E / B.Tech Programmes except AI&DS and AI&ML)	L	Т	Р	С
		4	0	0	4
Objectives					
Aı ✓ Tl	nis course is designed to cover topics such as Differential Equations, Vector Calcu nalysis and Laplace Transform. ne various methods of complex analysis and Laplace transforms can be used for en- lying the problems that occur in various branches of engineering disciplines.		-		
Course Out	comes (CO)				
CO1	The students will be imbibed with techniques in solving ordinary differential equ most of the engineering problems	ations	that ari	ses in	
CO2	The students will be acquainted with the concepts of vector calculus like Gradier Curl, Directional derivative, Irrational vector and Solenoidal vector. The course understanding of Vector integration, needed for problems in all engineering disc	gives a		÷,	
CO3	The students will develop an understanding of the standard techniques of comple so as to enable the student to apply them with confidence, in application areas su elasticity, fluid dynamics and flow of electric current.	ex varia			
CO4	The student will be exposed to the concept of Cauchy's integral theorem, Taylor expansions, Singular points, Application of residue theorem to evaluate complex				
CO5	Students will understand the purpose of using transforms to create new domain i ways to handle the problem that is being investigated.	n which	n can g	ive ea	sier

UNIT - I	ORDINA	RVDI	<u>EFFD</u>	ENTL	LEO	[] <u>A</u> TT(ONG							1
Higher order 1					-			rients -	. Meth	od of v	ariatio	n of par	ameter	
Homogenous			-									-		5
differential equ						, s typ		ystem	or sim	lununo	ous m	st order	mieur	
-					lents									1
Gradient and c					rgence	and ci	ırl - V	ector i	dentitie	es – Ir	rotatio	nal and s	Solenoi	
fields – Line in					-									
theorems – Ve	-	-				-			-			-	ence a	
	COMPLE		-	~ ~	ation n	i o vaia	uunig i		iluce ui			egiuis.		1
Analytic funct					ent cor	dition	s for a	nalvtic	ity in ([¬] artesi	an and	polarco	ordina	
equations) - Pr	operties	– Harr	nonic (conjug	ates –	Constr	uction	of ana	lytic f	unction	ı (Miln	e-Thom	son me	thod) –
Conformal ma	pping – S	Standaı	rd tran	sforma	tions V	N = Z	+C, C2	Z, 1/Z	- Bilin	ear trai	nsform	ation.		,
UNIT - IV														1
Cauchy integra			•	0		•					-			•
Residue theore							evaluati	on of	real in	tegrals	– Use	of circu	ilar co	ntour and
semicircular co		-	-		real lin	e).								
	APLAC					6		-	C	c			1	1
Existence con						-					-			-
function - Bas				-							-			-
functions - In						-						eorem –	- Appl	ication 1
solution of line	ar secon	d order	r ordin	ary di	terenti	al equa	ations	with co						
									T	otal Per	riods:	6	0 PER	IODS
Text Books:	x x · 1 · 1		· .	<u> </u>		71	D 11	1 1	<u>, </u>	11	.1		10	
1. Grewal B.S.	•	•	•											2016
2. Kreyszig Er	win, Adv	vanced	Engine	eering	Mathen	natics	, Jonn	wiley	and So	ns, 10t	n Eaiti	on, New	Deini,	2016.
Reference Boo		1 337 41	1. 0	A 1	1 T	· ·	· .	r .1			1 1 1	(• ,	6111
1. Bali N., Go						•	ering IV	lathem	atics, f	irewai	I Medi	a (An in	nprint (DI Lakshi
Publications							M. (1		Nterrer	. D. 1.1		NT	. 11. 2	
2. Jain R.K. ar	d Tyenga	r S.K.f	х., Adv	vanced	Engine	eering	Mather	natics,	Naros	a Publi	cations	s, new I	Jeini, 3	ora Eaitio
2007.	Advono	od Eng		va Mati	homotic	Con	~~~ T		Tudio	Drut I	td Nor	v Dalhi	2007	
 3. O 'Neil, P.V 4. Sastry, S.S, 		0		•			~ ~	-	-					
5. T. Veeraraja	-	-						-					, 2014.	
J. I. Veeraraja	II. Liigiik	Aring P	viatiicii		- 11, IVIC			ucation	II, 1 II St	cultion	12017.			
													Dro	gram
Course					Dr	oarom	Outco	mor						ecific
Outcomes					11	ugi am	Joun	mes					-	comes
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	3	3	2	0 1	0	o 0	9 0	0	1	2	1	<u> </u>
C01 C02	3	3	3	1	1	1	0	0	0	0	2	1	2	2
										-				2
CO3	3	3	3	2	1 0	1 0	0	1	0	0	1	1	1	
CO4	3					-	-	0	0	-	1	0	2	1
CO4 CO5	3	3	3	1	0	0	0	0	0	0	1	0	2	1 2

PH1255	Physics of Materials (Common to BIO & CHEM)	L	Т	Р	С
		3	0	0	3

To make the student conversant with the

- \checkmark Electronic properties in metals, properties of superconductors and its applications.
- ✓ Intrinsic and extrinsic semiconductors, Hall effect, LED, organic LED and solar cells.
- ✓ Types of magnetic materials and their applications, types of polarization and application
- \checkmark Types, synthesis, properties and applications of nanostructured materials.
- ✓ Importance of various new engineering materials like ceramics, SMA, metallic glasses and biomaterials.

Course Outcomes (CO)

CO1	Have the knowledge about carrier density calculation in metals, properties of superconductors and i applications.	its
CO2	Have the knowledge about carrier density calculation in intrinsic and extrinsic semiconductors, Hall effect, LED, OLED and solar cells.	l
CO3	Obtain the knowledge about magnetic and dielectric materials and their applications.	
CO4	Explore the knowledge about types, synthesis, properties and applications of nanostructured mater	rials.
CO5	Understand the importance, properties and applications of various new engineering materials like ceramics, SMA, metallic glasses and biomaterials.	
UNIT - I	CONDUCTING AND SUPERCONDUCTING MATERIALS	9

UNIT - I CONDUCTING AND SUPERCONDUCTING MATERIALS

Classical free electron theory - expression for electrical conductivity - thermal conductivity, Wiedemann-Franz law – electrons in metals: particle in a three-dimensional box (Qualitative) – degenerate states – Fermi-Dirac statistics - density of energy states - electron in periodic potential (concept only) - electron effective mass - concept of hole - Superconducting phenomena, properties of superconductors - Meissner effect and isotope effect. Type I

and Type II superconductors, High Tc superconductors – Magnetic levitation and SQUIDS.

UNIT - II SEMICONDUCTING MATERIALS

Elemental Semiconductors - Compound semiconductors - Origin of band gap in solids (qualitative) - carrier concentration in an intrinsic semiconductor (derivation) - Fermi level - variation of Fermi level with temperature - electrical conductivity - band gap determination - carrier concentration in n-type and p-type semiconductors (derivation) - variation of Fermi level with temperature and impurity concentration - Hall effect - determination of Hall coefficient -LED - Organic LED-Solar cells.

UNIT - III | DIELECTRIC AND MAGNETIC MATERIALS

Dielectric materials – Electronic, Ionic, Orientational and space charge polarization – Internal field and deduction of Clausius Mosotti equation -Frequency and temperature variation of dielectric materials- dielectric loss different types of dielectric breakdown – classification of insulating materials and their applications - Introduction to magnetic materials - Domain theory of ferromagnetism, Hysteresis, Soft and Hard magnetic materials - Antiferromagnetic materials - Ferrites - magnetoresistance - Giant magneto-resistance - Introduction to spintronics.

UNIT - IV | NANO MATERIALS

Nanoscience and technology – Surface to volume ratio – Classifications of nanostructured materials – nano particles - quantum dots, nanowires, ultra-thin films-multilayered materials.Bottom-up Synthesis –Top-down Approach: Co-Precipitation, Ultrasonication, ball Milling, sol- gel method-Properties: electrical, magnetic, catalytic and antimicrobial resistance – Applications of nanomaterials in agriculture and medicine.

UNIT - V NEW MATERIALS AND APPLICATIONS

Metallic glasses – Shape memory alloys: Copper, Nickel and Titanium based alloys – graphene, graphene oxide and its properties - Ceramics: types and applications - Composites: classification, role of matrix and reinforcement – processing of fibre reinforced plastics and fibre reinforced metals – Biomaterials: hydroxyapatite – PMMA - Silicone - Sensors: Chemical Sensors - Bio-sensors - conducting and semiconducting polymers - Nano fluids-Electro andmagneto rheological fluids.

> **Total Periods: 45 PERIODS**

9

9

9

9

Text Books:

1. Balasubramaniam, R. "Callister's Materials Science and Engineering". Wiley India Pvt. Ltd. 2014.

2. Kasap, S.O. "Principles of Electronic Materials and Devices". McGraw-Hill Education, 2017.

3. Wahab, M.A. "Solid State Physics: Structure and Properties of Materials". Narosa Publishing House, 2009.

Reference Books:

- 1. Askeland, D. "Materials Science and Engineering". Brooks/Cole, 2010
- 2. Raghavan, V. "Materials Science and Engineering: A First course". PHI Learning, 2015.

3. Smith, W.F., Hashemi, J. & Prakash. R. "Materials Science and Engineering". Tata McGraw Hill Education Pvt. Ltd., 2014.

Course Outcomes					Pr	ogram	Outco	omes						gram ecific comes
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	1	1	1	1	1	1	1	1	1	1	2	1
CO2	3	3	2	2	1	1	1	1	1	1	1	2	2	1
CO3	3	3	2	3	2	1	1	1	1	1	1	3	3	1
CO4	3	3	3	3	2	3	3	1	2	1	2	3	3	2
CO5	3	3	3	3	2	3	2	1	2	1	2	3	3	2

GE1204	Environmental science and engineering	L	Т	Р	C
		3	0	0	3
Objective	8				
\checkmark	To study the inter relationship between living organisms and environment.				
\checkmark	To appreciate the importance of environment by assessing its impact on the human v	world;	envisio	onthe	
	surrounding environment, its functions and its value.				
	To find and implement scientific, technological, economic and political solutions t	o envir	onmer	ntal	
	problems.				
\checkmark	To study the integrated themes and biodiversity, natural resources, pollution control	and wa	iste		
	management.				
	To study the dynamic processes and understand the features of the earth's interior an	d surfa	ice.		
Course O	utcomes (CO)				
CO1	To obtain knowledge about environment, ecosystems and biodiversity.				
CO2	To take measures to control environmental pollution.				
CO3	To gain knowledge about natural resources and energy sources.				
CO4	To find and implement scientific, technological, economic and political solutions problems.	s to the	enviro	nment	al
CO5	To understand the impact of environment on human population and human health	n.			

UNIT - I ENVIRONMENT, ECOSYSTEM AND BIODIVERSITY

Definition, scope and importance of environment – Need for public awareness – Role of Individual in Environmental protection – Concept of an ecosystem – Structure and function of an ecosystem – Producers, consumers and decomposers – Energy flow in the ecosystem – Food chains, food webs and ecological pyramids – Ecological succession – Types, characteristic features, structure and function of forest, grass land, desert and aquatic (ponds, lakes, rivers, oceans, estuaries) ecosystem.

Biodiversity – Definition – Genetic, species and ecosystem diversity – Value of biodiversity – Consumptive use, productive use, social, ethical, aesthetic and option values – Biodiversity at global, national and local levels –India as a mega diversity nation – Hot spots of biodiversity – Threats to biodiversity – Habitat loss, poaching of wild life, human-wildlife conflicts – Wildlife protection act and forest conservation act –Endangered and endemic species – Conservation of biodiversity – In-situ and ex-situ conservation of biodiversity.

UNIT - II ENVIRONMENTAL POLLUTION

Definition – Causes, effects and control measures of: (a) Air pollution (b) Water pollution (c) Soil pollution (d) Marine pollution (e) Noise pollution (f) Thermal pollution (g) Nuclear hazards – Solid waste management: causes, effects and control measures of municipal solidwastes – Problems of e-waste – Role of an individual in prevention of pollution – Pollution casestudies – Disaster management – Floods, earthquake, cyclone, tsunami and landslides – Fieldstudy of local polluted site – Urban / Rural / Industrial / Agricultural.

UNIT - III NATURAL RESOURCES

Forest resources: Uses and over-exploitation – Deforestation – Case studies – Timber extraction, mining, dams and their effects on forests and tribal people – Water resources – Use and overutilization of surface and ground water, floods, drought, conflicts over water – Dams: benefits and problems – Mineral resources: Uses and exploitation – Environmental effects of extracting and using mineral resources – Case studies – Food resources: World food problems – Changes caused by agriculture and overgrazing – Effects of modern agriculture: fertilizer– pesticide problems, water logging, salinity – Case studies – Energy resources: Growing energy needs – Renewable and non renewable energy sources – Use of alternate energy sources – Case studies – Land resources: Land as a resource – Land degradation, man induced landslides, soil erosion and desertification – Role of an individual in conservation of natural resources – Equitable use of resources for sustainable lifestyles – Field study of local area to document environmental assets – River / Forest / Grassland / Hill / Mountain.

UNIT - IV SOCIAL ISSUES AND THE ENVIRONMENT

From unsustainable to sustainable development – Urban problems related to energy – Water conservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns, case studies – Role of non-governmental organization – Environmental ethics – Issues and possible solutions – Climate change – Global warming – Acid rain, Ozone layer depletion –Nuclear accidents and holocaust – Case studies – Wasteland reclamation – Consumerism and waste products – Principles of Green Chemistry – Environment protection act – Air (Prevention and Control of Pollution) Act – Water (Prevention and control of Pollution) Act – Wildlife protection Act – Forest conservation Act – Enforcement machinery involved in environmental legislation– Central and state pollution control boards– National Green Tribunal – Public awareness.

UNIT - V HUMAN POPULATION AND THE ENVIRONMENT

Population growth – Variation among nations – Population explosion – Family welfare programme – Environment and human health – Human rights – Value education – HIV /AIDS – COVID 19 – Women and child welfare – Role of information technology in environment and human health – Case studies

Total Periods:45 PERIODS

9

9

8

8

Text Books:

- 1. Benny Joseph, 'Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, (2014).
- 2. Gilbert M. Masters, 'Introduction to Environmental Engineering and Science', 2nd edition, Pearson Education, (2004).
- 3. Dr. A. Sheik Mideen and S.Izzat Fathima, "Environmental Science and Engineering", Airwalk Publications, Chennai, (2018).

Reference Books:

1. Dharmendra S. Sengar, 'Environmental law', Prentice hall of India Pvt Ltd, New Delhi, (2007).

- 2. Erach Bharucha, "Textbook of Environmental Studies", Universities Press (I) Pvt, Ltd, Hyderabad, (2015).
- 3. G. Tyler Miller, Scott E. Spoolman, "Environmental Science", Cengage Learning India Pvt. Ltd, Delhi, (2014).
- 4. R. Rajagopalan, 'Environmental Studies From Crisis to Cure', Oxford University Press, (2005).
- 5. Anubha Kaushik, C.P. Kaushik, "Perspectives in Environmental Studies", New Age International Pvt. Ltd, New Delhi, (2004).
- 6. Frank R. Spellman, "Handbook of Environmental Engineering", CRC Press, (2015).

Course Outcomes		Program Outcomes													
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	3	2	2	3	3	3	3	3	2	2	2	3	2	2	
CO2	3	2	3	3	2	3	3	3	3	2	2	3	2	2	
CO3	3	3	2	2	3	3	2	2	1	2	1	3	2	2	
CO4	3	3	3	3	1	2	3	3	2	2	2	2	2	1	
CO5	3	2	3	2	3	3	3	2	2	2	2	3	3	2	

GE1205	Basic Civil and Mechanical Engineering (Common to BioTech, CHEMICAL, EEE, EIE)	L	Т	Р	С
		2	Δ	Δ	2

The objective of this course is to introduce basic knowledge on Civil Engineering Materials, Surveying, Foundations, Civil Engineering Structures, IC Engine, Working Principle of Power Plant, Accessories Of Power Plant, Refrigeration And Air Conditioning System

Course Out	comes (CO)	
CO1	To impart basic knowledge on Civil and Mechanical Engineering.	
CO2	To familiarize the materials and measurements used in Civil Engineering.	
CO3	To provide the exposure on the fundamental elements of civil engineering structures.	
CO4	To enable the students to distinguish the components and working principle of power plant, IC eng	ines
CO5	To provide the exposure on the fundamental elements of R & AC system.	
UNIT - I	SCOPE OF CIVIL AND MECHANICAL ENGINEERING	6

SCOPE OF CIVIL AND MECHANICAL ENGINEERING

Overview of Civil Engineering - Civil Engineering contributions to the welfare of Society

- Specialized sub disciplines in Civil Engineering - Structural, Construction, Geotechnical, Environmental, Transportation and Water Resources Engineering

Overview of Mechanical Engineering - Mechanical Engineering contributions to the welfare of Society Specialized sub disciplines in Mechanical Engineering - Production, Automobile, Energy Engineering -Interdisciplinary concepts in Civil and Mechanical Engineering.

UNIT - II	SURVEYING AND CIVIL ENGINEERING MATERIALS	9						
Surveying:	Surveying: Objects - classification - principles - measurements of distances - angles -leveling - determination							
of areas– co	ontours - examples.							
Civil Engine	Civil Engineering Materials: Bricks – stones – sand – cement – concrete – steel – timber - modern materials							
UNIT - III	BUILDING COMPONENTS AND STRUCTURES	12						
Foundations	Foundations: Types of foundations - Bearing capacity and settlement – Requirement of good foundations.							

Civil Engineering Structures: Brick masonry – stonemasonry – beams – columns – lintels – roofing flooring – plastering – floor area, carpet area and floor space index - Types of Bridges and Dams – water supply - sources and quality of water - Rain water harvesting - introduction to high way and rail way.

UNIT - IV INTERNAL COMBUSTION ENGINES AND POWER PLANTS

Classification of Power Plants - Internal combustion engines as automobile power plant – Working principle of Petrol and Diesel Engines – Four stroke and two stroke cycles – Comparison of four stroke and two stroke engines – Working principle of steam, Gas, Diesel, Hydro - electric and Nuclear Power plants – working principle of Boilers, Turbines, Reciprocating Pumps (single acting and double acting) and Centrifugal Pumps

UNIT - V REFRIGERATION AND AIR CONDITIONING SYSTEM

Terminology of Refrigeration and Air Conditioning. Principle of vapour compression and absorption system– Layout of typical domestic refrigerator–Window and Split type room Air conditioner.

Total Periods:45 PERIODS

Text Books:

1. Shanmugam G and Palanichamy MS, "Basic Civil and Mechanical Engineering", Tata McGraw Hill PublishingCo., NewDelhi, 1996.

Reference Books:

- 1. Palanikumar, K. Basic Mechanical Engineering, ARS Publications, 2010.
- 2. Ramamrutham S., "Basic Civil Engineering", Dhanpat Rai Publishing Co.(P) Ltd.1999.
- 3. Seetharaman S., "BasicCivil Engineering", AnuradhaAgencies, 2005.
- 4. ShanthaKumar SRJ., "Basic Mechanical Engineering", Hi-tech Publications, Mayiladuthurai, 2000.
- 5. Venugopal K. and Prahu Raja V., "Basic Mechanical Engineering", Anuradha Publishers, Kumbakonam, 2000.

Course Outcomes					Pr	ogram	Outco	omes					Program Specific Outcomes		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	3	3	3	2	3	3	3	-	3	2	2	3	2	2	
CO2	3	2	3	3	3	3	2	-	2	1	1	3	3	2	
CO3	3	2	3	3	2	3	2	-	3	2	1	3	3	2	
CO4	3	2	3	2	2	3	2	-	3	2	2	3	3	2	
CO5	3	2	3	2	2	3	2	-	2	2	1	3	2	2	

CH1206	INTRODUCTION TO CHEMICAL ENGINEERING	L	Т	Р	C
		3	0	0	2
Objectives					
✓ To	o understand the overview of Chemical Engineering				
✓ To	gain knowledge on role of basic sciences in Chemical Engineering				
✓ To	know about the various unit operations and unit process in Chemical Engineering	5			
	o understand the importance of computer applications in Chemical Engineering				
✓ To	know about the future and various opportunities for Chemical Engineers				
Course Outo	comes (CO)				
CO1	To Learn about basics of chemical Engineering				
CO2	To Understand the concept of components of chemical Engineering				
CO3	To learn about the Unit Operation and Unit Processes of chemical Engineerin	g			
CO4	To Understand the role of various disciplines in chemical Engineering				

12

6

CO5 To learn about paradigm shifts, Opportunities in chemical Engineering. UNIT - I **INTRODUCTION** 5 Historical overview of Chemical Engineering - Chemistry and Chemical Engineering - Chemical process industries- Chemical Engineering in everyday life - Recent developments in Chemical Engineering **ROLE OF BASIC SCIENCES IN CHEMICAL ENGINEERING** UNIT - II 12 Units and dimensions - Role of physics, chemistry, biology, mathematics in Chemical Engineering - Concepts of fluid flow- Velocity and stress field - Newtonian and non-Newtonian fluids - Scope of thermodynamics; laws of thermodynamics - Chemical Kinetics- Rate equation, elementary, non-elementary reactions, order and molecularity UNIT - III REPRESENTATION OF UNIT OPERATIONS & FLOWSHEETING 12 Description and representation of different Unit Processes and Unit Operations; Heat and mass transfer operation; Modes of heat transfer - Fourier's law of heat conduction; Fick's Law; Designing of equipment; Flow sheet representation of process plants, Evolution of an Industry UNIT - IV **ROLE OF SOFTWARES & OTHER DISCIPLINES IN CHEMICAL ENGINEERING** 10 Role of Computers simulations (MATLAB, ASPEN PLUS, ASPEN HYSYS, ANSYS FLUENT) and their Applications; Role of Chemical Engineers in the area of Food, Medical, Energy, Environmental, Biochemical – Introduction to Process control UNIT - V FUTURE & RECENT ADVANCES IN CHEMICAL ENGINEERING 6 Paradigm shifts in Chemical Engineering; Range of scales in Chemical Engineering; Opportunities for Chemical Engineers – Process Intensification, Biomass conversions **Total Periods: 45 PERIODS Text Books:** 1. Badger W.L. and Banchero J.T., "Introduction to Chemical Engineering", 7th Edition, Tata McGraw Hill, 2015. 2. Ghosal, S.K., Sanyal S.K. and Dutta.S, "Introduction to Chemical Engineering" TMH Publications, New Delhi, 2012. 3. Dryden, C.E., "Outlines of Chemicals Technology", Edited and Revised by Gopala Rao, M. and M.Sittig, 2nd Edition, Affiliated East-West press, 2016. 4. Randolph Norris Shreve, George T. Austin, "Shreve's Chemical Process Industries", 5th edition, McGrawHill, 2020 **Reference Books:** 1. McCabe, W.L., Smith, J. C. and Harriot, P. "Unit operations in Chemical Engineering", McGraw Hill, 7th Edition, 2015. 2. Finlayson, B. A., "Introduction to Chemical Engineering Computing", John Wiley & Sons, New Jersey, 2012. 3. Pushpavanam, S, "Introduction to Chemical Engineering", PHI Learning Private Ltd, New Delhi, 2012 4. Bhatt B. I. and Vora, S. M, "Stoichiometry", 4th edition, McGraw Hill, 2014.

Course

Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	2	1	1	2	1	1	1	2	1	2	1	1
CO2	3	3	3	3	3	3	2	1	1	1	2	3	2	2
CO3	3	3	3	3	3	3	2	1	2	2	2	3	2	3
CO4	3	3	3	3	3	3	2	1	2	1	2	3	2	3
CO5	3	3	3	3	3	3	2	1	2	2	2	3	2	3

GE1207	Engineering Practices Laboratory		Т	Р	С					
		0	0	4	2					
Objectives										
\checkmark To provide exposure to the students with hands on experience on various basic engineering practices in										
Civil, Mechanical, Electrical and Electronics Engineering										
Course Outcomes (CO)										
CO1	Able to fabricate carpentry components and pipe connections including plumbing works.									
CO2	Able to use welding equipments to join the structures, carry out the basic machining operations, and make the models using sheet metal works.									
CO3	Able to illustrate on centrifugal pump, air conditioner, operations of smithy, foundry and fittings.									
CO4	Able to carry out basic home electrical works and appliances, measure the electrical quantities.									
CO5	Able to elaborate on the electronic components and gates, soldering practices.									
	Total Periods: 60 PERIODS									

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS **GROUP A (CIVIL & MECHANICAL)** CIVIL ENGINEERING PRACTICE 13 **Buildings:** (a) Study of plumbing and carpentry components of residential and industrial buildings. Safety aspects. **Plumbing Works:** a) Study of pipeline joints, its location and functions: valves, taps, couplings, unions, reducers, elbows in household fittings. b) Study of pipe connections requirements for pumps and turbines. c) Preparation of plumbing line sketches for water supply and sewage works. d) Hands-on-exercise: Basic pipe connections – Mixed pipe material connection – Pipe connections with different joining components. e) Demonstration of plumbing requirements of high-rise buildings. **Carpentry using Power Tools only:** a) Study of the joints in roofs, doors, windows and furniture. **b**) Hands-on-exercise: Wood work, joints by sawing, planing and cutting. MECHANICAL ENGINEERING PRACTICE 18 Π Welding: (a) Preparation of butt joints, lap joints and T- joints by Shielded metal arc welding. (b) Gas welding practice **Basic Machining:** (a) Simple Turning and Taper turning (b) Drilling Practice **Sheet Metal Work:** (a) Forming & Bending: (b) Model making – Trays and funnels. (c) Different type of joints. Machine assembly practice: (a) Study of centrifugal pump (b) Study of air conditioner **Demonstration on:** (a) Smithy operations, upsetting, swaging, setting down and bending. Example - Exercise - Production of hexagonal headed bolt. Foundry operations like mould preparation for gear and step cone pulley. (b) (c) Fitting – Exercises – Preparation of square fitting and V – fitting models. **GROUP B (ELECTRICAL & ELECTRONICS)** III **ELECTRICAL ENGINEERING PRACTICE** 13 1. Residential house wiring using switches, fuse, indicator, lamp and energy meter.

- 2. Fluorescent lamp wiring.
- 3. Stair case wiring
- 4. Measurement of electrical quantities voltage, current, power & power factor in RLC circuit.
- 5. Measurement of energy using single phase energy meter.
- 6. Measurement of resistance to earth of an electrical equipment.

IV ELECTRONICS ENGINEERING PRACTICE

- 1. Study of electronic components and equipments Resistor, colour coding measurement of parameter (peak-peak, rms period, frequency) using CR.
 AC signal
- 2. Study of logic gates AND, OR, EX-OR and NOT.
- 3. Generation of Clock Signal.
- 4. Soldering practice Components Devices and Circuits Using general purpose PCB.
- 5. Measurement of ripple factor of HWR and FWR

Total periods:60

S.No.	Description of Equipment	Quantity required
	CIVIL	
1.	Assorted components for plumbing consisting of metallic pipes, plastic pipes, flexible pipes, couplings, unions, elbows, plugs and other fittings.	15 sets
2.	Carpentry vice (fitted to work bench)	15 Nos
3.	Standard woodworking tools 15 Sets.	15 Sets.
4.	Models of industrial trusses, door joints, furniture joints	5 each
5.	Power Tools: (a) Rotary Hammer (b) Demolition Hammer (c) Circular Saw (d) Planer (e) Hand Drilling Machine (f) Jigsaw	2 Nos
	MECHANICAL	
1.	Arc welding transformer with cables and holders.	5 Nos
2.	Welding booth with exhaust facility.	5 Nos
3.	Welding accessories like welding shield, chipping hammer, wire brush, etc.	5 Sets
4.	Oxygen and acetylene gas cylinders, blow pipe and other welding outfit.	2 Nos
5.	Centre lathe.	2 Nos
6.	Hearth furnace, anvil and smithy tools.	2 Sets
7.	Moulding table, foundry tools.	2 Sets
8.	Power Tool: Angle Grinder.	2 Nos
9.	Study-purpose items: centrifugal pump, air-conditioner.	1 each
	ELECTRICAL	
1.	Assorted electrical components for house wiring.	15 Sets
2.	Electrical measuring instruments.	10 Sets
3.	Study purpose items: Iron box, fan and regulator, emergency lamp.	1 each
4.	Megger (250V/500V).	1 No.
5.	Power Tools: (a) Range Finder (b) Digital Live-wire detector	2 Nos
	ELECTRONICS	
1.	Soldering guns 10 Nos.	10 Nos.
2.	Assorted electronic components for making circuits 50 Nos.	50 Nos.
<u> </u>	Small PCBs.	10 Nos.
<u> </u>	Multimeters	10 Nos.
5.	Study purpose items: Telephone, FM radio, low-voltage power supply	1 each

Course Outcomes					Pr	ogram	Outco	omes					Pro Spo Outo	gram ecific comes
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	1	3	-	-	3	2	-	1	1	-	3	2	2
CO2	3	2	3	-	-	3	1	-	2	1	-	3	2	2
CO3	3	1	2	-	-	2	2	-	1	1	-	3	2	2
CO4	3	2	3	3	1	3	1	1	1	1	2	3	1	2
CO5	3	2	3	3	1	2	1	1	1	1	2	3	1	2

CH1208	Technical Analysis Laboratory	L	Т	P	C
		0	0	4	2
Objectives					
	To make the student acquire practical skills in the wet chemical and instrumenta	al metl	nods f	or	
	quantitative estimation of nitrite in water, cement, oil, coal and Phenol.				
Course Or	tcomes (CO)				
CO1	Able to analyze oil, soap and bleaching powder				
CO2	Able to analyze cement phenol and viscosity of sample				
CO3	Able to analyze fuel and fertilizer.				
LIST OF	EXPERIMENTS				
	Analysis: (3 experiments)				
) Acid value				
) Saponification value				
() Iodine value				
	ap Analysis: (2 experiments)				
· · · ·) Alkali Content				
) Fatty acid content of Soap				
	imation of purity of glycerol: by Dichromatic method				
	alysis of water:				
	termination chlorine demand in water: Estimation of residual chlorine in water by	Volum	etric r	nethod	
	ment Analysis (3 experiments)				
	imation of silica content				
	imation of calcium oxide content				
	timation of mixed oxide content				
	tilizer Analysis: Estimation of Nitrogen in Urea by Kjeldals method imation of Phenol				
	imation of Phenol imation of available chlorine present in bleaching powder				
	imation of available chlorine present in bleaching powder				
	imation of viscosity of given sample of on				
	imation of mash point, me point, cloud point, pour point of rule imation of aniline point of fuel				
	plications: Implementing GUI using turtle, pygame.				
otal Perio			60 PI	ERIOD)S
	au -		0011		
Reference	Dooka				
keierence	DUUKS:				

1. Vogel's Textbook of Quantitative Chemical Analysis, J Mendham & M Thomas, Pearson Publications, 2015.

2. Environmental pollution analysis, S.M.Khopkar, New age international, 2011

3. Manual of environmental analysis, N.C Aery, Ane books, 2014

Course Outcomes					Pr	ogram	Outco	omes					Pro Spo Out	gram ecific comes
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	2	2	2	1	3	3	2	3	1	3	3	3	3
CO2	2	2	2	2	1	3	3	2	3	1	3	3	3	3
CO3	2	2	2	2	1	3	3	2	3	1	3	3	3	3

SEMESTER III

MA1353	APPLIED NUMERICAL ANALYSIS	L	Т	Р	С
		4	0	0	4
Objectives					
✓ To int	roduce the basic concepts of solving algebraic and transcendental equations.				
✓ To int	roduce the numerical techniques of interpolation in various intervals in real life				
✓ To ac	quaint the student with understanding of numerical techniques of differentiation and	integ	ratio	n this p	plays
an im	portant role in engineering and technology disciplines.				
	quaint the knowledge of various techniques and methods of solving ordinary differe		-		
✓ To un	derstand the knowledge of various techniques and methods of solving various types	of pa	rtial	differe	ential
equat					
Course Outco	omes (CO)				
CO1	Do curve fitting, solve algebraic, transcendental equation and system of li	near	equa	tions	
CO2	Interpolate using standard methods like finite difference methods and cubic	spli	nes		
CO3	Apply Numerical differentiation and integration for the observed data				
CO4	Have an insight of finding the numerical solution of first order differential easingle step methods and multi-step methods.	quatio	on by	y Stan	dard
CO5	Understand the finite difference solution of second order ordinary different	ial eq	uatio	on and	d get
	the solution of the standard engineering partial differential equation by e	xplic	it m	ethod	and
	implicit method				
UNIT - I	CURVE FITTING AND SOLUTION OF EQUATIONS				12
	- Method of least square -Curve fitting - Fitting a straight line and parabola -Calc				
-	siduals. Solution of algebraic and transcendental equations - Fixed point iteration				
-	nod - Solution of linear system of equations - Gauss elimination method- Iterative n	nethoo	1 - G	auss S	eidel
method					
UNIT - II	INTERPOLATION AND APPROXIMATION				12

Interpolation with unequal intervals - Lagrange's interpolation – Newton's divided difference interpolation – Cubic Splines - Difference operators and relations - Interpolation with equal intervals - Newton's forward and backward difference formulae.

UNIT - III NUMERICAL DIFFERENTIATION AND INTEGRATION

Approximation of derivatives using interpolation polynomials - Numerical integration using Trapezoidal, Simpson's 1/3 rule and 3/8 rule – Romberg's Method - Two point and three point Gaussian quadrature formulae – Evaluation of double integrals by Trapezoidal and Simpson's 1/3 rules.

UNIT - IV INITIAL VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATIONS

Single step methods - Taylor's series method - Euler's method - Modified Euler's method–Fourth order Runge – Kutta method for solving first order equations -Multistep Methods-Milne's and Adams - Bash forth predictor corrector methods for solving first order equations.

UNIT - V BOUNDARY VALUE PROBLEMS IN ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS

Finite difference methods for solving second order two - point linear boundary value problems – Finite difference techniques for the solution of two dimensional Laplace's and Poisson's equations on rectangular domain–One dimensional heat flow equation by explicit and implicit (Crank Nicholson) methods – One dimensional wave equation by explicit method.

Total Periods:60 PERIODS

12

12

12

Text Books:

- 1. Burden, R.L and Faires, J.D, "Numerical Analysis", 10th Edition, Cengage Learning, 2017.
- 2. Grewal, B.S., and Grewal, J.S., "Numerical Methods in Engineering and Science", Khanna Publishers, 10th Edition, New Delhi,2015.

- 1. Brian Bradie, "A Friendly Introduction to Numerical Analysis", Pearson Education, Asia, New Delhi, 2007.
- 2. Gerald. C. F. and Wheatley. P. O., "Applied Numerical Analysis", Pearson Education, Asia,7th Edition, New Delhi, 2007.
- 3. Mathews, J.H. "Numerical Methods for Mathematics, Science and Engineering", 2nd Edition, Prentice Hall, 1992.
- 4. Sankara Rao. K., "Numerical Methods for Scientists and Engineers", Prentice Hall of India Pvt. Ltd, 4th Edition, New Delhi,2018.
- 5. Sastry, S.S, "Introductory Methods of Numerical Analysis", PHI Learning Pvt. Ltd, 5th Edition, 2015.

Course Outcomes					Pı	rogram	Outco	omes					Sp	gram ecific comes
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	3	3	2	2	1	0	0	0	0	0	2	2	2
CO2	3	2	3	1	2	1	0	0	0	0	1	2	2	1
CO3	3	2	2	1	2	1	0	0	0	0	1	2	2	2
CO4	3	3	3	2	2	1	0	0	0	0	0	2	1	2
CO5	3	3	2	1	2	1	0	0	0	0	0	2	2	1

CH1301	Process Calculations	L	Τ	Р	C
<u></u>		3	1	0	4
Objectives			1		
	cquire knowledge on laws of chemistry and its application to solution of mass and ener	gy ba	lance	e equa	tions
	ingle and network of units and introduce to process simulators.				
	comes (CO)				
CO1	To familiarize the student's basic concepts of units, dimensions, and other technic them to do unit conversions.				
CO2	To introduce the concepts of material balances by taking industrial examples and t computations with respect to bypass, purging and recycle operations	rain i	in ma	thema	itica
CO3	To introduce the concept of ideal and non-ideal systems and related problems and with combustion problems.	train	ing tl	ne stud	lent
CO4	Effectively bring in the concept of energy balances and computations in various typ problems related to chemical industries.	bes of	ener	gy bal	anc
CO5	To bring in the latest advancements in design and modelling, related process simulation non ideal systems.	tors a	ind pi	roblen	1S O
UNIT - I					12
-	w. Use of partial pressure and pure component volume in gas calculations, appliin gas calculation.	licatio	ons o	of real	ga
relationship UNIT - II Stoichiometi crystallisatio	in gas calculation.	, eva	porat	ion,	12
relationship UNIT - II Stoichiometr crystallisatio and purging	in gas calculation.	, eva	porat	ion,	12 vpas
relationship UNIT - II Stoichiometricrystallisation and purging UNIT - III Calculation condensation	in gas calculation.	, eva nts - 1	porat	ion, le - by	$\frac{12}{y}$
relationship UNIT - II Stoichiometricrystallisation and purging UNIT - III Calculation condensation UNIT - IV	in gas calculation. ric principles, Application of material balance to unit operations like distillation, on, drying etc., - Material balance with chemical reaction - Limiting and excess reactar - Unsteady state material balances. of absolute humidity, molal humidity, relative humidity and percentage humidity - n and drying - Humidity chart, dew point.	, eva nts - 1 Use	porat recyc of hu	ion, le - by umidit	12 7pas 12 y in 12
relationship UNIT - II Stoichiometricrystallisation and purging UNIT - III Calculation condensation UNIT - IV Heat capacit sensible hea solution, min	in gas calculation. in gas calculation. ic principles, Application of material balance to unit operations like distillation, on, drying etc., - Material balance with chemical reaction - Limiting and excess reactar - Unsteady state material balances. of absolute humidity, molal humidity, relative humidity and percentage humidity -	, eva nts - 1 Use s, pro	porat recyc of hu blem	ion, le - by umidit s invo ombus	12 vpas 12 y in 12 lvin stion
relationship UNIT - II Stoichiometricrystallisation and purging UNIT - III Calculation condensation UNIT - IV Heat capacit sensible hea solution, mix Energy balan	in gas calculation.	, eva nts - 1 Use s, pro matic e on h	porat recyc of hu blem on, c heat o	ion, le - by umidit s invo ombus f react	The second secon
relationship UNIT - II Stoichiometricrystallisation and purging UNIT - III Calculation condensation UNIT - IV Heat capacit sensible hea solution, mix Energy balan UNIT - V Determination	in gas calculation. in gas calculation. in gas calculation. in gas calculation. in gas calculation of material balance to unit operations like distillation, in, drying etc., - Material balance with chemical reaction - Limiting and excess reactant - Unsteady state material balances. of absolute humidity, molal humidity, relative humidity and percentage humidity - n and drying - Humidity chart, dew point. y of solids, liquids, gases and solutions, use of mean heat capacity in heat calculations t and latent heats, evaluation of enthalpy. Standard heat of reaction, heats of for scing etc., calculation of standard heat of reaction - Effect of pressure and temperature nce for systems with and without chemical reaction - Unsteady state energy balances on of Composition by Orsat analysis of products of combustion of solid, liquid and ga	, eva nts - 1 Use s, pro matic e on h	porat recyc of hu blem on, c heat o	ion, le - by umidit s invo ombus of react	12 ypass 12 y in 12 lvin stion 12 atio
relationship UNIT - II Stoichiometricrystallisation and purging UNIT - III Calculation condensation UNIT - IV Heat capacit sensible hea solution, mix Energy balan UNIT - V Determination of excess air	in gas calculation. in gas calculation. ic principles, Application of material balance to unit operations like distillation, n, drying etc., - Material balance with chemical reaction - Limiting and excess reactate - Unsteady state material balances. of absolute humidity, molal humidity, relative humidity and percentage humidity - n and drying - Humidity chart, dew point. y of solids, liquids, gases and solutions, use of mean heat capacity in heat calculations t and latent heats, evaluation of enthalpy. Standard heat of reaction, heats of for scing etc., calculation of standard heat of reaction - Effect of pressure and temperature nce for systems with and without chemical reaction - Unsteady state energy balances on of Composition by Orsat analysis of products of combustion of solid, liquid and ga r from orsat technique, problems on sulphur and sulphur burning compounds - Ap	, eva nts - 1 Use s, pro matic e on h	porat recyc of hu blem on, c heat o	ion, le - by umidit s invo ombus of react	12 12 y pass 12 y ir 12 y ir 12 ion 12 13 14 15 16 17 18 19 11 11 11 12 13 14 15 16 17 17 18 19 11 11 12 12
relationship UNIT - II Stoichiometricrystallisation and purging UNIT - III Calculation condensation UNIT - IV Heat capacit sensible hea solution, mix Energy balan UNIT - V Determination of excess air	in gas calculation.	, eva nts - 1 Use s, pro matic e on h as fue pplica	porat recyc of hu blem on, c leat o els - (ion, le - by umidit s invo ombus of react Calculs of Pro	12 ypas 12 y in 12 lvin 12 lvin 12 atio occes
relationship UNIT - II Stoichiometricrystallisation and purging UNIT - III Calculation condensation UNIT - IV Heat capacit sensible hea solution, mix Energy balan UNIT - V Determination of excess air	in gas calculation. in gas calculation. ic principles, Application of material balance to unit operations like distillation, in, drying etc., - Material balance with chemical reaction - Limiting and excess reactar - Unsteady state material balances. of absolute humidity, molal humidity, relative humidity and percentage humidity - n and drying - Humidity chart, dew point. y of solids, liquids, gases and solutions, use of mean heat capacity in heat calculations t and latent heats, evaluation of enthalpy. Standard heat of reaction, heats of for sing etc., calculation of standard heat of reaction - Effect of pressure and temperature nee for systems with and without chemical reaction - Unsteady state energy balances on of Composition by Orsat analysis of products of combustion of solid, liquid and ga r from orsat technique, problems on sulphur and sulphur burning compounds - Ap energy and material balance problems. Total Period	, eva nts - 1 Use s, pro matic e on h as fue pplica	porat recyc of hu blem on, c leat o els - (ion, le - by umidit s invo ombus of react	12 ypas 12 y in 12 lvin stion 12 ation oces

1. Bhatt, B.L., Vora, S.M., "Stoichiometry ", 4th Edition, Tata McGraw-Hill (2004)

2. Himmelblau, D.M., "Basic Principles and Calculations in Chemical Engineering", EEE

Sixth Edition, Prentice Hall Inc., 2003

3. Felder, R. M. and Rousseau, R. W., "Elementary Principles of Chemical

Processes", 3rdEdn., John Wiley & Sons, New York, 2000.

Reference Books:

1. Hougen O A, Watson K M and Ragatz R A, "Chemical process principles" Part I, CBS publishers (1973).

Course Outcomes					Pı	rogram	Outco	omes					Sp	gram ecific comes
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	1	1	1	0	1	2	1	1	1	2	2	1
CO2	2	3	3	2	1	0	1	2	1	1	1	2	3	2
CO3	3	3	3	2	1	0	1	1	2	1	1	2	3	2
CO4	3	3	3	3	1	0	1	1	2	1	1	2	3	3
CO5	3	3	3	3	3	0	3	1	2	1	1	2	3	3

CH1302	Fluid Mechanics for Chemical Engineers	L	Т	Р	С
		3	0	0	3
Objectives					
	quire a sound knowledge on fluid properties, fluid statics, dynamic characteristics of f	luid f	flow f	for thr	ough
pipes	and porous medium, flow measurement and fluid machineries				
Course Outc	omes (CO)				
CO1	To gain engineering knowledge on types of fluids based on Newton's law of viscos	sity.			
CO2	To educate the students about hydrostatic pressure distribution, manometry and la mass.	w of	conse	ervatio	on of
CO3	To score engineering knowledge on analyzing the system using dimensional analysis	sis an	d sca	le-up.	
CO4	To be conversant with types of fluid flow and pressure drop involved with it, ma losses and flow through fluidized and packed beds.	jor lo	osses	and n	ninor
CO5	Flow measurement techniques.				
UNIT – I	INTRODUCTION				9
Methods of a	nalysis and description - fluid as a continuum – Velocity and stress field -Newtoniar	n and	non-	Newto	onian
fluids - Class	ification of fluid motion				
UNIT – II	FLUID STATICS				9
Fluid statics	- basic equation - equilibrium of fluid element - pressure variation in a static f	luid	- app	licatio	on to
manometer -	Differential analysis of fluid motion - continuity, equation of motions, Bernoulli e	equat	ion a	nd Na	vier-
Stokes equati	on.				
UNIT – III	DIMENSIONAL ANALYSIS				9

The principle of dimensional homogeneity – dimensional analysis, Rayleigh method and the Pi-theorem - nondimensional action of the basic equations - similitude – relationship between dimensional analysis and similitude - use of dimensional analysis for scale up studies.

UNIT – IV FLOW THROUGH PIPES

Reynolds number regimes, internal flow - flow through pipes – pressure drop under laminar and turbulent flow conditions – major and minor losses; Line sizing; External flows - boundary layer concepts, boundary layer thickness under laminar and turbulent flow conditions- Flow over a sphere – friction and pressure drag - flow through fixed and fluidized beds.

UNIT - V TRANSPORTATION OF FLUIDS

Flow measurement - Constant and variable head meters; Velocity measurement techniques; Types, characteristics, and sizing of valves; Classification, performance characteristics and sizing of pumps, compressors, and fans

Total Periods:

9

9

45

Text Books:

1. Noel de Nevers, "Fluid Mechanics for Chemical Engineers", Second Edition, McGraw-Hill, (1991).

McCabe W.L, Smith, J C and Harriot. P "Unit operations in Chemical Engineering", McGraw Hill, VII Edition, 2005
 Munson, B. R., Young, D.F., Okiishi, T.H. "Fundamentals of Fluid Mechanics", 5th Edition ", John Wiley, 2006

Reference Books:

1. White, F.M., "Fluid Mechanics ", IV Edition, McGraw-Hill Inc., 1999.

2. James O Wilkes and Stacy G Bike, "Fluid Mechanics for Chemical Engineers' Prentice Hall PTR (International series in Chemical Engineering) (1999)

Course Outcomes					P	rogram	o Outco	omes					Spe	gram ecific comes
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	2	2	3	0	0	0	0	1	1	1	1	2	2
CO2	2	2	2	3	0	0	0	0	1	1	1	1	2	3
CO3	2	2	2	3	1	0	0	0	1	1	2	1	2	3
CO4	2	2	2	3	2	0	1	0	1	1	1	1	3	3
CO5	2	2	2	3	1	1	1	1	1	1	1	1	2	3

	3	0	0	3
	•			
edge on				
circuit laws, single and three phase circuits and wiring				
Principles of Electrical Machines				
Electronic Devices and Measuring Instruments				
es (CO)				
o explain the basic laws and theorems used in Electrical circuits				
o impart knowledge on single phase and three phase AC circuit and wirin	ng			
	edge on circuit laws, single and three phase circuits and wiring principles of Electrical Machines Electronic Devices and Measuring Instruments es (CO) o explain the basic laws and theorems used in Electrical circuits o impart knowledge on single phase and three phase AC circuit and wirin	circuit laws, single and three phase circuits and wiring Principles of Electrical Machines Electronic Devices and Measuring Instruments es (CO)	circuit laws, single and three phase circuits and wiring principles of Electrical Machines Electronic Devices and Measuring Instruments es (CO) o explain the basic laws and theorems used in Electrical circuits	circuit laws, single and three phase circuits and wiring principles of Electrical Machines Electronic Devices and Measuring Instruments es (CO) o explain the basic laws and theorems used in Electrical circuits

·														
CO3	To comp	rehen	d the c	onstru	ction a	and wo	orking	princip	ole of	Electr	ical ma	chines		
	To expla						-							
CO5	To impa	rt knov	wledge	e on d	ifferen	t meas	suring	instrur	nents					
	ELECTI						<u> </u>							9
Basic principles Kirchoff's Law Maximum pow	, steady s er transfe	tate so er theor	lution or em.											Theorem,
UNIT – II	AC CIR	CUITS	5											9
Introduction to balanced circuit	ts, housir	ıg wiriı	ng, ind	ustrial	wiring,				ower fa	ctor, si	ingle pl	nase and	three-p	
UNIT – III	ELECTI	RICAL	MAC	HINE	S									9
Construction, F Synchronousma	-	_							ines, 7	Transfo	rmers	(single a	and thre	e phase),
UNIT – IV	ELECTI	RONIC	CDEV	ICES A	AND C	CIRCU	ITS							9
Types of Mater Semiconductor operational Am UNIT – V	Diodes	–Bipol nvertir	ar Juno 1g Amp	ction T	ransist -Non Iı	or – C nverting	haracte g Ampl	ristics lifier –I	– trans	sistor a				
Introduction to moving coil an power measure	d moving	g iron .	Amme	ter and	Voltn	neter –	multin	neters -	- dynai	nomete	er type	Wattme	eter – th	ree-phase
												Total:	45	Periods
Text Books:												1 otal:	45	Periods
 D P Kothar Education(1 Thereja .B. 	India) Pri L., "Func	ivate L	imited,	Third	Reprin	t ,2016						ngineerir	ng", Mc	
 D P Kothar Education(I Thereja .B. Reference Boo	India) Pri L., "Func oks:	ivate Lanent	imited, als of I	Third Electric	Reprin al Eng	t ,2016 ineerin	g and E	Electror	nics", S	. Chan	d & Co	ngineerir 9. Ltd., 2	ng", Mc	
 D P Kothar Education(I Thereja .B. Reference Boo Del Tor 	India) Pri L., "Fund oks: ro, "Elect	ivate Li lament trical E	imited, als of I	Third Electric	Reprin al Eng	t ,2016 ineerin entals",	g and E	Electror	nics", S	. Chan	d & Co	ngineerir 9. Ltd., 2 007	ng", Mc	
 D P Kothar Education(I Thereja .B. Reference Boo Del Tor John Bi 	India) Pri L., "Fund ks: ro, "Elect ird, "Elect	ivate L lament trical E etrical (imited, als of I Enginee Circuit	Third Electric ring Fu Theory	Reprin al Eng undame and T	t ,2016 ineerin entals", 'echnol	g and E Pearsc	Electror on Educ Elsevier	nics", S cation, , First	. Chan New D Indian	d & Co elhi, 20 Edition	ngineerir 9. Ltd., 2 007 1, 2006	ng", Mc 008	
 D P Kothar Education(I Thereja .B. Reference Boo Del Tor John Bi Allan S 	India) Pri L., "Func ks: ro, "Elect ird, "Elect 5 Moris, "	ivate L lament trical E etrical ('Measu	imited, als of I Enginee Circuit irement	Third Electric ering Fu Theory t and In	Reprin al Eng indame and T strume	t ,2016 ineerin entals", echnol entatior	g and E Pearsc ogy", E n Princi	Electror on Educ Elsevier ples", 1	nics", S cation, First Elsevie	New D Indian	d & Co elhi, 20 Edition Indian	ngineerir 9. Ltd., 2 007 1, 2006 Edition,	ng", Mc 008	
 D P Kothar Education(I Thereja .B. Reference Boo Del Tor John Bi Allan S Rajendi 	India) Pri L., "Fund ks: ro, "Elect ird, "Elect 5 Moris, " ra Prasad	ivate L lament trical E ctrical ('Measu l, "Fund	imited, als of I Enginee Circuit Iremen dament	Third Electric Tring Fu Theory t and In tals of I	Reprin al Eng indame and T astrume Electric	t ,2016 ineerin entals", 'echnol entatior cal Eng	g and E Pearsc ogy", E Princi ineerin	Electror on Educ Elsevier ples", 1 g", Pre	aics", S ation, [*] First Elsevie ntice H	New D Indian r, First Iall of I	d & Co elhi, 20 Edition Indian	ngineerir o. Ltd., 2 007 n, 2006 Edition, 006	ng", Mc 008 ,2006	
 D P Kothar Education(I Thereja .B. Reference Boo Del Tor John Bi Allan S Rajendi 	India) Pri L., "Func ks: ro, "Elect ird, "Elect 5 Moris, "	ivate L lament trical E ctrical ('Measu l, "Fund	imited, als of I Enginee Circuit Iremen dament	Third Electric Tring Fu Theory t and In tals of I	Reprin al Eng indame and T astrume Electric	t ,2016 ineerin entals", 'echnol entatior cal Eng	g and E Pearsc ogy", E Princi ineerin	Electror on Educ Elsevier ples", 1 g", Pre	aics", S ation, [*] First Elsevie ntice H	New D Indian r, First Iall of I	d & Co elhi, 20 Edition Indian	ngineerir o. Ltd., 2 007 n, 2006 Edition, 006	ng", Mc 008 ,2006	
 D P Kothar Education(I Thereja .B. Reference Boo Del Tor John Bi Allan S Rajendi 	India) Pri L., "Fund ks: ro, "Elect ird, "Elect 5 Moris, " ra Prasad	ivate L lament trical E ctrical ('Measu l, "Fund	imited, als of I Enginee Circuit Iremen dament	Third Electric Tring Fu Theory t and In tals of I	Reprin al Eng indame / and T astrume Electric iple of	t ,2016 ineerin entals", 'echnol entatior cal Eng	g and F Pearsco ogy", F n Princi ineerin cal Eng	Electror on Educ Elsevier ples", 1 g", Pre gineerir	aics", S ation, [*] First Elsevie ntice H	New D Indian r, First Iall of I	d & Co elhi, 20 Edition Indian	ngineerir o. Ltd., 2 007 n, 2006 Edition, 006	ng", Mc 008 ,2006 008 Pro	
 D P Kothar Education(I Thereja .B. Reference Boo Del Tor John Bi Allan S Rajendi V.K Mi 	India) Pri L., "Fund ks: ro, "Elect ird, "Elect 5 Moris, " ra Prasad	trical E trical E trical ('Measu I, "Fund Rohit I	imited, als of I Enginee Circuit urement dament Mehta,	Third Electric Tring Fu Theory t and In tals of I	Reprin al Eng indame and T istrume Electric iple of Pr	t ,2016 ineerin entals", 'echnol entatior cal Eng Electric	g and F Pearsco ogy", F n Princi ineerin cal Eng	Electror on Educ Elsevier ples", 1 g", Pre gineerir	nics", S ration, ; First Elsevie ntice H ng", S.C	New D Indian r, First [all of I Chand d	d & Co elhi, 20 Edition India, 2 & Com	ngineerir b. Ltd., 2 007 a, 2006 Edition, 006 pany, 20	ng", Mc 008 ,2006 008 Pro Spo Outo	gram
 D P Kothar Education(I Thereja .B. Reference Boo Del Tor John Bi Allan S Allan S Rajendi V.K Mi Course Outcomes	India) Pri L., "Fund oks: ro, "Elect ird, "Elect Moris, " ra Prasad ehta and 1	trical E trical E trical (Measu , "Fund Rohit M	imited, als of I Enginee Circuit trement dament Mehta,	Third Electric ering Fu Theory t and In tals of I "Princi	Reprin al Eng indame and T istrume Electric iple of Pr 5	t ,2016 ineerin entals", echnol entatior cal Eng Electric rogram	g and F Pearsco ogy", F n Princi ineerin cal Eng o Outco	Electror on Educ Elsevier ples", 1 g", Pre gineerir omes 8	nics", S cation, c, First Elsevie ntice H ug", S.C	New D Indian r, First Iall of I Chand &	d & Co elhi, 20 Edition India, 2 & Comj	ngineerir b. Ltd., 2 007 h, 2006 Edition, 006 pany, 20 12	ng", Mc 008 ,2006 008 Pro Spo Outo 1	ecific comes 2
 D P Kothar Education(I Thereja .B. Reference Boo Del Tor John Bi Allan S Allan S Rajendi V.K Max Course Outcomes CO1	India) Pri L., "Fund iks: ro, "Elect ird, "Elect S Moris, " ra Prasad ehta and I 1 3	trical E trical E trical C Measu , "Fund Rohit M	imited, als of I Enginee Circuit trement dament Mehta, 3 3	Third Electric ering Fu Theory t and In tals of I "Princi 4 2	Reprin al Eng indame / and T astrume Electric iple of Pr 5 1	t ,2016 ineerin entals", 'echnol entatior cal Eng Electric rogram	g and F Pearsco ogy", F Princi ineerin cal Eng Outco 7 1	Electror on Educ Elsevier ples", 1 g", Pre gineerir omes 8 1	nics", S cation, ; First Elsevie ntice H gg", S.C 9 1	New D Indian r, First fall of I Chand & 10	d & Co elhi, 20 Edition India, 2 & Com 11 1	ngineerir b. Ltd., 2 007 h, 2006 Edition, 006 pany, 20 12 1	ng", Mc 008 ,2006 008 Pro Spe Oute 1 3	eGraw Hil gram ecific comes 2 2
 D P Kothar Education(I Thereja .B. Reference Boo Del Tor John Bi Allan S Allan S Rajenda V.K Ma Course Outcomes CO1 CO2	India) Pri L., "Fund iks: ro, "Elect ird, "Elect Moris, " ra Prasad ehta and 1 3 3	ivate L lament trical E trical C Measu I, "Fund Rohit M 2 3 3	imited, als of I Enginee Circuit Irement dament Mehta, 3 3 3	Third Electric ering Fu Theory t and In tals of I "Princi 4 2 2	Reprin al Eng indame / and T istrume Electric iple of Pr 5 1 1	t ,2016 ineerin entals", fechnol entatior cal Eng Electric rogram	g and F Pearscoogy", F n Princi ineerin cal Eng Outco 7 1 1	Electror on Educ Elsevier ples", 1 g", Pre gineerir omes 8 1 1	nics", S eation, F First Elsevie ntice H ng", S.C 9 1 1	New D Indian r, First Iall of I Chand & 1 1	d & Co elhi, 20 Edition India, 2 & Comj 11 1	ngineerir b. Ltd., 2 007 h, 2006 Edition, 006 pany, 20 12 1 1	ng", Mc 008 ,2006 008 Pro Spo Outo 1 3 3	eGraw Hil gram ecific comes 2 2 2 2
 D P Kothar Education(I Thereja .B. Reference Boo Del Tor John Bi Allan S Allan S Rajendi V.K Ma Course Outcomes CO1 CO2 CO3	India) Pri L., "Fund iks: ro, "Elect ird, "Elect S Moris, " ra Prasad ehta and <u>1</u> 3 3 3 3	trical E trical E trical C Measu , "Fund Rohit N 2 3 3 3 3	imited, als of I Enginee Circuit trement dament Mehta, 3 3 3 2	Third Electric ering Fu Theory t and In tals of I "Princi 4 2 2 2	Reprin al Eng indame / and T astrume Electric iple of Pr 5 1 1 1	t ,2016 ineerin entals", 'echnol entatior cal Eng Electric rogram 6 3 3 3	Pearsc ogy", E Princi ineerin cal Eng Outco 7 1 1 1	Electror on Educ Elsevier ples", 1 g", Pre jineerir omes 8 1 1 1	ation, ation, First Elsevie ntice H ag", S.C 9 1 1 1	New D Indian r, First Iall of I Chand & 1 1 1	d & Co elhi, 20 Edition India, 2 & Comp 11 1 1	ngineerir b. Ltd., 2 007 h, 2006 Edition, 006 pany, 20 12 1 1 1 1	ng", Mc 008 ,2006 008 Pro Spo Outo 1 3 3 3	eGraw Hil
 D P Kothar Education(I Thereja .B. Reference Boo Del Tor John Bi Allan S Allan S Rajenda V.K Ma Course Outcomes CO1 CO2	India) Pri L., "Fund iks: ro, "Elect ird, "Elect Moris, " ra Prasad ehta and 1 3 3	ivate L lament trical E trical C Measu I, "Fund Rohit M 2 3 3	imited, als of I Enginee Circuit Irement dament Mehta, 3 3 3	Third Electric ering Fu Theory t and In tals of I "Princi 4 2 2	Reprin al Eng indame / and T istrume Electric iple of Pr 5 1 1	t ,2016 ineerin entals", fechnol entatior cal Eng Electric rogram	g and F Pearscoogy", F n Princi ineerin cal Eng Outco 7 1 1	Electror on Educ Elsevier ples", 1 g", Pre gineerir omes 8 1 1	nics", S eation, F First Elsevie ntice H ng", S.C 9 1 1	New D Indian r, First Iall of I Chand & 1 1	d & Co elhi, 20 Edition India, 2 & Comj 11 1	ngineerir b. Ltd., 2 007 h, 2006 Edition, 006 pany, 20 12 1 1	ng", Mc 008 ,2006 008 Pro Spo Outo 1 3 3	eGraw Hil gram ecific comes 2 2 2 2

Solid Mechanics for Technologists

L Р С 3 0 0 3

9

9

9

45

Objectives
✓ To obtain skill in creating database retrieval of data and to solve Mathematical models through linear and non-
linear programming.

$(\Omega \Omega)$

Course Ou	itcomes (CO)
CO1	Students will be equipped with the software applications and the numerical solutions of chemical engineering problems.
CO2	To introduce the concept of Chemical Kinetics calculations and related problems and training the students with problems techniques.
CO3	To introduce the concepts of material balances by taking industrial examples and train in mathematical and Graphical representations of various Chemical Engineering problem in exercise and core subject's computations.
CO4	Effectively bring in the concept of computations in various types of problems related to chemical industries.
CO5	To bring in the latest advancements in design and modelling, related process simulators and problems on software systems.

UNIT - I STRESS, STRAINAND DEFORMATION OF SOLIDS

Stress and Strain: Load and its effect, Types of stresses, Types of strain, Support and free body diagram, Hooke's law and simple problems - compound bars - thermal stresses - elastic constants and poission's ratio.

TRANSVERSE LOADING ON BEAMS UNIT - II

Beams -- support conditions--types of Beams -- transverse loading on beams--shear force and bending moment in beamsanalysis of cantilevers, simply – supported beams and over hanging beams – relationships between loading, S.F. and B.M.Inbeams and their applications-S.F.& B.M. diagrams

DEFLECTIONS OF BEAMS UNIT - III

Double integration method - Macaulay's method - Area - moment theorems for computation of slopes and deflections in beams.

UNIT - IV STRESSES IN BEAMS

Theory of simple bending – assumptions and derivation of bending equation (M/I=F/Y=E/R) – analysis of stresses in beams-loads carrying capacity of beams-proportioning beam sections - leaf springs - flitched beams.

UNIT - V TORSION AND COLUMNS

Torsion of circular shafts – derivation of torsion equation $(T/J = fs/R = C\theta/L)$ – stress and deformation in circular and hollow shafts - stresses and deformation in circular and hollow shafts-Euler's theory of long columns

Total Periods:

Text Books:

1. Junarkar, S. B., Mechanics of Structure Vol.1, 21st Edition, Character Publishing House, Anand, Indian, (1995).

- 2. William A.Nash, Theory and Problems of Strength of Materials, Schaum's Outline Series.
- 3. McGraw Hill International Editions, Third Edition, 1994.
- 4. Bansal, R.K., Strength of Materials, Laxmi Publications(P) Ltd., Fourth Edition 2010

Reference Books:

1. Elangovan A., Thinma Visailyal (Mechanics of Solids in Tamil), Anna University, Madras, 1995.

Course Outcom					P	rogran	n Outco	omes						Prog Spec Dutco	
	1	2	3	4	5	6	7	8	9	10	11	12	1		2
CO1	2	2	2	3	1	1	1	1	1	1	1	1	2		2
CO2	2	2	2	3	1	1	1	1	1	1	1	1	2		3
CO3	2	2	2	3	1	1	1	1	1	1	1	1	2		3
CO4	2	2	2	3	2	1	1	1	1	1	1	1	3		3
CO5	2	2	2	3	1	1	1	1	1	1	1	1	2		3
CH1307				Fluid N	Mechai	nics La	borato	ry				L	T	P	0
Objectives	<u>,</u>											0	0	3	2
	To learn exp characterist itcomes (C	ics.	itally to	o calibra	ate flov	v meter	s, find j	pressur	e loss f	or fluid	flows	and det	termin	e pur	np
CO1	Identify an	nd chara	acterize	e of flow	w patter	rns and	regime	S							
CO2	Calibrate	flow me	easuren	nent de	vices										
CO3	Correlate														
CO4	Select pur														
CO5	Compare sustainabl			heoreti	cal ana	lytical	models	s to the	actual	behavi	or of r	eal flui	d flow	s and	d dra
LIST OF	EXPERIM	ENTS													
	scosity mea libration of														
	libration of				incut i	neter s									
	en drum or				e										
1	ow through			8											
	ow through	-													
	ow through		· ·	d spiral	coil										
8. Lo	sses in pipe	fittings	s and va	alves											
9. Ch	aracteristic	curves	of pum	ips (Cei	ntrifuga	al / Gea	r / Reci	iprocati	ng)						
10. Pr	essure drop	studies	in pack	ced colu	umn										
11. Hy	drodynami	cs of flu	uidized	bed											
12 . Dr	ag coefficie	ent of so	olid par	ticle											
	EQUIPME scometer	NT FO	RAB.	АТСН	OF 30	STUD	ENTS								
1. V1															
	enturi meter														
2. Ve	enturi meter ifice meter														

- 5. Weir
- 6. Open drum with orifice
- 7. Pipes and fittings
- 8. Helical and spiral coils
- 9. Centrifugal pump
- 10. Packed column
- 11. Fluidized bed

Course Outcomes		Program Outcomes													
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	2	2	2	3	0	0	0	0	1	1	1	1	2	2	
CO2	2	2	2	3	0	0	0	0	1	1	1	1	2	3	
CO3	2	2	2	3	1	0	0	0	1	1	2	1	2	3	
CO4	2	2	2	3	2	0	1	0	1	1	1	1	3	3	
CO5	2	2	2	3	1	1	1	1	1	1	1	1	2	3	

Total Periods:

60 PERIODS

EE1358	Electrical Engineering Laboratory	L	Т	Р	С
		0	0	3	2
Objectives	5				
✓ '	To validate the principles studied in theory by performing experiments in the labor	atory			
Course Ou	utcomes (CO)				
CO1	Ability to perform DC Shunt and Series Motor characteristics and to analyse the s DC shunt Motor.	peed co	ontrol	behavi	iour of
CO2	Ability to perform the characteristics of DC Shunt generator on O.C and Load co	nditior	s.		
CO3	Ability to perform Open circuit, Short Circuit and Load test on Single Phase Tran	nsform	er.		
CO4	Ability to perform regulation characteristics on the alternator and to analyse the curve of a Synchronous motor.	V-cur	ve and	Inver	ted V-
CO5	Ability to perform the speed control behaviour of an induction motor and all principles of AC and DC motor starters.	lso to	know	the w	orking

LIST OF EXPERIMENTS

- 1. Load test on DC Shunt & DC Series motor
- 2. O.C.C & Load characteristics of DC Shunt and DC Series generator
- 3. Speed control of DC shunt motor (Armature, Field control)
- 4. Load test on single phase transformer
- 5. O.C & S.C Test on a single phase transformer
- 6. Regulation of an alternator by EMF & MMF methods.
- 7. V curves and inverted V curves of synchronous Motor
- 8. Load test on three phase squirrel cage Induction motor
- 9. Speed control of three phase slip ring Induction Motor

10. Study of DC & AC Starters

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

S.No.	NAME OF THE EQUIPMENT	Qty.
1	DC Shunt motor	2
2	DC Series motor	1
3	DC shunt motor-DC Shunt Generator set	1
4	DC Shunt motor-DC Series Generator set	1
5	Single phase transformer	2
6	Three phase alternator	2
7	Three phase synchronous motor	1
8	Three phase Squirrel cage Induction motor	1
9	Three phase Slip ring Induction motor	1

Total Periods:

60 PERIODS

Course Outcomes		Program Outcomes													
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	3	3	1	3	1	3	2	1	2	2	2	3	3	3	
CO2	3	3	1	3	1	3	2	1	2	2	2	3	3	3	
CO3	3	3	1	3	1	3	2	1	2	2	2	3	3	3	
CO4	3	3	1	3	1	3	2	1	2	2	2	3	3	3	
CO5	3	3	1	3	1	3	2	1	2	2	2	3	3	3	

SEMESTER IV

MA1452	Applied Probability and Statistics (Common to BIO, CHEM)	L	Т	Р	С
		4	0	0	4

Objectives

- \checkmark This course aims at providing the required skill to apply the statistical tools in engineering problems.
- \checkmark To introduce the basic concepts of probability and random variables.
- \checkmark To introduce the basic concepts of two dimensional random variables.
- ✓ To acquaint the knowledge of testing of hypothesis for small and large samples which plays an important role in real life problems.
- ✓ To introduce the basic concepts of classifications of design of experiments which plays very important roles in the field of agriculture and statistical quality control.

Course Outcomes (CO)

CO1	Get exposure to random variables and well-founded knowledge of standard distributions where can describe real life phenomena.	nich
CO2	Get ideas to handle situations involving more than one random variable	
CO3	Gain the knowledge on Large Samples and Small Samples. These concepts are very useful biological, economical and social experiments and all kinds of generalizations based information about a smaller sample and larger samples. Apply the appropriate test in problems related with sampling.	on
CO4	Apply the basic concepts of design of experiments and handle the same.	
CO5	Understand the concept of the Control charts to apply in the field of quality assessme Production processes, to monitor process stability and control of the manufacturing product	
UNIT - I		12
	The axioms of probability – Conditional probability – Baye's theorem - Discrete and continuous rand Moments – Moment generating functions – Binomial, Poisson, Geometric, Uniform, Exponential butions.	
UNIT - II	TWO - DIMENSIONAL RANDOM VARIABLES	12
	tions – Marginal and conditional distributions – Covariance – Correlation and linear regression – Cer a (for independent and identically distributed random variables).	ntral
UNIT - III	TESTING OF HYPOTHESIS	12
distribution f	stributions - Estimation of parameters - Statistical hypothesis - Large sample tests based on Nor or single mean and difference of means -Tests based on t, Chi-square and F distributions for mean, varia on - Contingency table (test for independent) – Goodness of fit.	
UNIT - IV	DESIGN OF EXPERIMENTS	12
One way and	Two way classifications - Completely randomized design - Randomized block design - Latin square design - Randomized block design - Randomi	sign
UNIT - V	STATISTICAL QUALITY CONTROL	12
Control chart Acceptance s		
	Total: 60 PERIO	DS
Text Books:		
Education	R.A., Miller, I and Freund J., "Miller and Freund's Probability and Statistics for Engineers", Pear, Asia, 9th Edition, 2017.S. and Arnold. J.C., "Introduction to Probability and Statistics", Tata McGraw Hill, 4th Indian Edit	
2017.		

- 1. Devore. J.L., "Probability and Statistics for Engineering and the Sciences", Cengage Learning, New Delhi, 9th Edition, 2017.
- 2. Papoulis, A. and Unnikrishnapillai, S., "Probability, Random Variables and Stochastic
- 3. Processes", McGraw Hill Education India, 4th Edition, New Delhi, 2017.
- 4. Ross, S.M., "Introduction to Probability and Statistics for Engineers and Scientists", 4th Edition, Elsevier, 2009.
- 5. Spiegel. M.R., Schiller. J. and Srinivasan, R.A., "Schaum's Outline of Theory and Problems of Probability and Statistics", Tata McGraw Hill Edition, 2008.
- 6. Walpole. R.E., Myers. R.H., Myers. S.L. and Ye. K., "Probability and Statistics for Engineers and Scientists", Pearson Education, Asia, 9th Edition, 2012.

Course Outcomes					Pı	rogram	o Outco	mes						Progi Spec Outco	ific
	1	2	3	4	5	6	7	8	9	10	11	12	1		2
CO1	3	3	2	3	2	1	0	0	0	0	1	1	2		2
CO2	3	3	2	2	2	1	0	0	0	0	1	1	2		1
CO3	3	3	2	3	3	2	1	0	0	0	2	2	2		2
CO4	3	3	2	3	2	2	1	0	0	0	1	2	1		2
CO5	3	3	3	3	2	2	1	0	0	0	2	1	2		1
CH1401			С	hemist	try for	Chem	nical E	nginee	ers			L	Т	Р	0
					v			0				3	0	0	3
Objectives												-	-		
The course is	aimed to														
		knowle	dao of	haria	nomiat-	v to um	laratan	l tha fiv	ndamar	ntal muin	oinles s	fohom	0.01 01	naina	orin
-	ovide the		-			-		i ine iul	luamer	nai prir	cipies c	л chein	ical el	igine	enn
	miliarize					0	0	1							
	derstand		1c conc	epts of	reaction	n comp	onents	and sys	tems.						
Course Outc	2														
CO1	Unders	tand th	e basic	princi	iples of	f chem	istry ap	plicab	le to c	hemica	al engir	neering	•		
CO2	Unders	tand th	e basic	s of or	ganic o	compo	unds								
CO3	Familia				-	_									
CO4	Familia					-	nginee	ring.							
CO5	Unders						U	U							
UNIT - I	Chiders			lonnsei	y.										9
Preparation, P	hysical &	, Chem	ical pro	nerties	and Us	es of Py	vrrole F	Furan F	Furfural	Tetral	vdro Fi	uran Tł	nionhe	ene I	-
Pyridine, Qui															
Antibacterial											e una e	moroqu	ine s	<i>y</i> 110110	0010
UNIT - II	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			, <u>r</u> -		, ~~	F								9
Carbohydrate	s – classi	fication	Mono	saccha	rides- re	eaction	of Glue	cose an	d fructo	ose one	en chain	and cy	clic st	ructi	ires (
glucose and fi															
ketoses and K															
structure of st					1	1					5		1	L	
UNIT - III															9
Elimination H	Reaction	– E1.I	E2 elim	inatior	– Bro	edt's ri	ule – Z	Zartsev'	's rule	– Cor	densati	on read	ction	– B	enzo
Condensation															
malonic ester								-		•					
rearrangemen			0				0				C				
UNIT - IV															9
Electrolytic co	onductan	ce – Sp	ecific. I	Equival	ent and	Molar	conduc	tance –	Kohlra	auch's l	aw and	its appl	icatio	ns. F	lectr
		-		-											
potential, Elec glass electroc	les. The	Nernst	equali	un anu	appine	auono					aactom	eu j			curre
potential, Elec															cuiic

Rate of reaction – Rate constants – Order and molecularity of reaction – First, second, third and zero order reactions – Method of determining order of reactions – Differential and integral rate expressions – Rate measurement method – Volumetry – Spectrophotometry. Complex reactions – Reverse reactions – Parallel or side reactions, chain reactions, consecutive reactions and explosive reaction. Effect of temperature and solvent on reaction rate. Theories of reaction rates – Activated complex theory of Bi-molecular reactions, the lindemann theory of unimolecular reactions.

Total: 45 PERIODS

Text Books:

- 1. Advance organic Chemistry B.S. Bahl and Arun Bahl
- 2. Text book of organic chemistry P.L.Soni
- 3. Principles of Physical Chemistry B. R. Puri, L.R. Sharma, M.S. Pathania

Reference Books:

- 1. R.P.Singh, Handbook of Chemistry, 3rd Edition, 2015, Arihant Publications
- 2. Jain & Jain, Engineering Chemistry, 16th Edition, 2015, , Dhanpat Rai Pulishing Compnay

Course Outcomes		Program Specific Outcomes													
	1	2	3	4	5	6	7	8	9	10	11	12	1		2
CO1	3	3	2	3	2	1	0	0	0	0	1	1	2		2
CO2	3	3	2	2	2	1	0	0	0	0	1	1	2		1
CO3	3	3	2	3	3	2	1	0	0	0	2	2	2		2
CO4	3	3	2	3	2	2	1	0	0	0	1	2	1		2
CO5	3	3	3	3	2	2	1	0	0	0	2	1	2		1
Objectives ✓ Stude probl	ents will t lems.	oe equip	pped wi	th the	softwar	e appli	cations	and the	e nume	rical so	lutions	of chem	ical e	ngine	ering
Course Outo		0)													
CO1	Map EF		to Rela	ational	model	to perfo	orm dat	abase d	lesign e	ffective	ely				
CO2	Write q	ueries u	ising no	rmaliz	ation cr	riteria a	nd opti	mize qu	ueries						
	Design	the Oue	ery Proc	cessor a	and Tra	nsactio	n Proce	ssor							
CO3	Design	me Que				11	ibutod (latahas	es snat	ial data	bases a	nd mobi	le dat	hace	
CO3 CO4	Learn d	· ·	databa	se conc	cepts lil	ke distri	iouteu (latabas	co, sput		oubes u		ic uat	abase	s.
	Learn d	ifferent			•							aph data			×S.

Kinetics calculations. Lab Component

• Calculation of average molecular weight of given gas mixture.

• Pilla	out Empirical and mole	cular weight using MS Excel		
UNIT - II				9 + 6
representatio Mechanical o Lab Compose • Regr	ns of various Chemical operation, Reaction Engi nent ession Analysis using sp	-		
UNIT - III				9+6
Database in Balances pre Lab Component Mate	report, query and other paration of plant layout. nent rial and energy balance	e databases on Chemical and Physical pro- formats, Interfacing with other software. using spread sheet emical properties using spread sheet		
UNIT - IV				9 + 6
Introduction	to C – C tokens – data ty	m – Program development cycle – Algorith ppes – Operators and expressions – I/O funct		eudo code.
Introduction Lab Compose • Solve • Use	to C – C tokens – data ty nent e quadratic equation for of spreadsheet to create (pes – Operators and expressions – I/O funct	tions	
Introduction Lab Compose Solve Use (Flow UNIT - V	to C – C tokens – data ty nent e quadratic equation for of spreadsheet to create (vcharts and algorithms a STATISTICAL QUA	ppes – Operators and expressions – I/O funct different sets of inputs. Charts(XY, Bar, Pie) and apply the formulae re essential for the programming exercises)	tions e wherever necessary C Pro	gramming 9+6
Introduction Lab Compose Solve Use (Flow UNIT - V Decision mat Passing array Lab Compose Matr Grea	to C – C tokens – data ty nent e quadratic equation for of spreadsheet to create C vcharts and algorithms a STATISTICAL QUA king statements – brance to functions Storage cla nent ix operations- Addition - test of three numbers usi	Appes – Operators and expressions – I/O funct different sets of inputs. Charts(XY, Bar, Pie) and apply the formulae re essential for the programming exercises) LITY CONTROL hing and looping – arrays – multidimension asses – Strings – String library functions - Transpose – Multiplication ing conditional operator and if statement	e wherever necessary C Pro-	gramming 9 + 6 ecursion –
Introduction Lab Compose Solve Use (Flow UNIT - V Decision mai Passing array Lab Compose Matr Grea PRACTIC	to C – C tokens – data ty nent e quadratic equation for of spreadsheet to create C vcharts and algorithms a STATISTICAL QUA king statements – branci to functions Storage cla nent ix operations- Addition -	Appes – Operators and expressions – I/O funct different sets of inputs. Charts(XY, Bar, Pie) and apply the formulae re essential for the programming exercises) LITY CONTROL hing and looping – arrays – multidimension sses – Strings – String library functions	tions e wherever necessary C Pro	gramming 9 + 6 ecursion –
Introduction Lab Compose Solve Use (Flow UNIT - V Decision mai Passing array Lab Compose Matr Grea PRACTIC Text Books: 1. Hanna, O.	to C – C tokens – data ty nent e quadratic equation for of spreadsheet to create C vcharts and algorithms a STATISTICAL QUA king statements – brance to functions Storage cla nent ix operations- Addition test of three numbers usi SALS: 30 PERIODS T. Scandell, O.C. Comp	Appes – Operators and expressions – I/O funct different sets of inputs. Charts(XY, Bar, Pie) and apply the formulae re essential for the programming exercises) LITY CONTROL hing and looping – arrays – multidimension asses – Strings – String library functions - Transpose – Multiplication ing conditional operator and if statement	tions e wherever necessary C Pro- nal arrays – Functions – Ro TOTAL : 75 PERI	gramming 9 + 6 ecursion –
Introduction Lab Compose Solve Use (Flow UNIT - V Decision mai Passing array Lab Compose Matr Great PRACTIC Text Books: 1. Hanna, O.	to C – C tokens – data ty nent e quadratic equation for of spreadsheet to create C vcharts and algorithms a STATISTICAL QUA king statements – branc to functions Storage cla nent ix operations- Addition test of three numbers usi ALS: 30 PERIODS T. Scandell, O.C. Compu- li, T.K. dBase IV made s	Appes – Operators and expressions – I/O funct different sets of inputs. Charts(XY, Bar, Pie) and apply the formulae re essential for the programming exercises) LITY CONTROL hing and looping – arrays – multidimension asses – Strings – String library functions - Transpose – Multiplication ang conditional operator and if statement THEORY: 45 PERIODS	tions e wherever necessary C Pro- nal arrays – Functions – Ro TOTAL : 75 PERI	gramming 9 + 6 ecursion –

Course Outcomes					P	rogran	n Outco	mes					5	Progra Specia Putcon	fic
	1	2	3	4	5	6	7	8	9	10	11	12	1		2
CO1	3	3	3	3	2	1	1	-	-	2	2	2	2		3
CO2	3	3	3	3	2	1	1	-	-	2	2	2	2		3
CO3	3	3	3	3	2	1	1	-	-	2	2	2	2		3
CO4	3	3	3	3	2	1	1	-	-	2	2	2	2		3
CO5	3	3	3	3	2	1	1	-	-	2	2	2	2		3
CH1403 Objectives				Γ	Mechai	nical O	peratio	ns				L 3	T 0	P 0	C 3
	pact kno	•			-		reductio	on and o	deals w	ith the	detail co	onstruct	ion ar	nd wo	rking
Course Outc	*														
CO1	To gain of scree	n analy	sis, equ	ipmen	ťs, and	its effe	ectivene	ss.				-		is met	hod
CO2	To educ							•			v				
CO3	To score using ba	atch sec	limenta	tion.	-	-					-				
CO4	To be co operation	on.					-			_	_		_		
CO5	To mak and tran	isportat	ion of s	olids.		-				-	n of dif	ferent n	hixture	es, sto	-
UNIT - I	PARTI			-						-					9
General chara Light scatterii					-			•		•	•	•			
analysis techn	•	-	.							-			iceu p	anticle	2 51Z
U NIT - II	PARTI							÷							9
Laws of size i crushers, grin size reduction	ders, disi	ntegrat	ors for	coarse,	interm	ediate,	and fine	e grindi	ng, pov	ver requ	uiremen	t, work	index	; Adv	ance
- Importance particle gener		largem	ent, pri	nciple	of gran	ulation	, brique	tting, p	elletisa	tion, ar	nd floccu	ulation.	Funda	ament	als c
UNIT - III	PARTI	CLE S	EPAR	ATION	N (GAS	S-SOLI	D AND	LIQU	ID-SO	LID S	YSTEN	()			9
Gravity settli Centrifugal se equipment, cy igging	ng, sedi paration	mentati - contin	ion, th uous ce	ickenin entrifug	ig, elui ges, sup	triation, er centr	, doubl rifuges,	e cone design	e class of bask	ifier, r tet cent	ake cla rifuges;	ssifier, industri	ial dus	t rem	ovin
uzzmz															

Theory of filtration, Batch and continuous filters, Flow through filter cake and filter media, compressible and incompressible filter cakes, filtration equipment's - selection, operation and design of filters and optimum cycle of operation, filter aids.

UNIT - V MIXING AND PARTICLE HANDLING

Mixing and agitation - Mixing of liquids (with or without solids), mixing of powders, selection of suitable mixers, power requirement for mixing. Storage and conveying of solids - Bunkers, silos, bins and hoppers, transportation of solids in bulk, Powder hazards, conveyer selection, different types of conveyers and their performance characteristics.

Total: 45 PERIODS

Text Books:

1. McCabe, W.L., Smith, J.C., and Harriot, P., "Unit Operations in Chemical Engineering", 7th Edn., McGraw-Hill, 2005.

- 2. Badger W.L. and Banchero J.T., "Introduction to Chemical Engineering", Tata McGraw Hill, 1997.
- 3. Foust, A. S., Wenzel, L.A., Clump, C.W., Naus, L., and Anderson, L.B., "Principles of Unit
- 4. Operations", 2nd Edn., John Wiley & Sons, 1994.
- 5. Hiroaki Masuda, KoHigashitani and Hideto Yoshida, Powder Technology Handbook, 3rd Edition.

- 1. Coulson, J.M. and Richardson, J.F., "Chemical Engineering" Vol. II, 4th Edn., Asian Books Pvt. Ltd., India, 1998.
- 2. Christie J. Geankoplis, Transport processes and unit operations.
- 3. Sunggyu Lee, Kimberly H. Henthorn, Particle Technology and Applications.
- 4. Martin Rhodes, Introduction to Particle Technology, Second Edition.
- Richard R. Klimpel, Introduction to the Principles of Size Reduction of Particles by Mechanical Means, NSF Engineering Research Center for Particle Science & Technology. University of Florida, 1997.

Course Outcomes					Pı	rogram	o Outco	omes					Pro Spo Out	gram ecific comes
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	2	2	3	1	1	1	1	1	1	1	1	2	2
CO2	2	2	2	3	1	1	1	1	1	1	1	1	2	3
CO3	2	2	2	3	1	1	1	1	1	1	1	1	2	3
CO4	2	2	2	3	2	1	1	1	1	1	1	1	3	3
CO5	2	2	2	3	1	1	1	1	1	1	1	1	2	3

CH1404	Chemical Process Industries	L	Т	Р	С
		3	0	0	3
Objectives					
	npart knowledge on various aspects of production engineering and make the stu ical methods of production in a chemical factory.	ıdent	unde	erstand	1 the
Course Outc	omes (CO)				
CO1	To gain engineering knowledge on various aspects of production engineering and to of production of sulphur, sulphuric acid and cement	the pr	actic	al met	hods
CO2	To understand the practical methods of production of fertilizer products				
CO3	To learn &understand the practical methods of production of pulp, paper, sugar and	d star	ch in	dustrie	es

CO4	To gain engineering knowledge on various aspects of production of petroleum and petro chen industries	nical
CO5	To learn & understand and analyse the fuel and industrial gases	
UNIT - I	SULFUR, SULFURIC ACID AND CEMENT	9
Sulfur, Raw n	naterials Sources, Mining and production of Sulfur - Sulfuric acid, Methods of production of Sulfuric	acid
- Contact pro	cess - Chamber process. Cement - properties of Cement - Methods of production - Overall factor	s for
Cement indus	try.	
UNIT - II	FERTILIZER INDUSTRY	9
Main Com	en en la constructione de la c	•

Major Components of Fertilizer industries – Nitrogen industries, ammonia, nitric acid, urea – Phosphorus industries - Phosphorus, Phosphoric acid, Super Phosphate – Potassium chloride, Potassium Sulphate

UNIT - III | PULP, PAPER, SUGAR AND STARCH INDUSTRIES

Pulp – Methods of production – Comparison of pulping processes. Paper – types of paper products, Raw materials, Methods of production. Sugar – Methods of production – by products of the Sugar industry – Starch – Methods of production, Starch derivations.

UNIT - IV PETROLEUM AND PETRO CHEMICAL INDUSTRIES

Petroleum – Chemical Composition, Classification of crude petroleum, Petroleum Refinery products – Petroleum Conversion processes – Pyrolysis and Cracking, Reforming Polymerization, isomerization and Alkylation – petrochemicals – methanol, chloro methanol, Acetylene and ethylene, Isopropanol, Acrylonitrile, Butadiane – Chemicals from Aromatics - Benzene, Toluene and Xylene.

UNIT - V FUEL AND INDUSTRIAL GASES

Fuel Gases – Producer gas, Water gas, Coke oven gas, Natural gas, Liquefied natural gas – Industrial gases – Carbon dioxide, hydrogen, nitrogen and oxygen.

Total: 45 PERIODS

9

9

9

Text Books:

1. Dryden, C.E, Outlines of Chemical technology, II Ed., Affiliate East West press, 2003.

2. Moulin, J.A., M. Makkee, and Diepen, A.V., Chemical Process Technology, Wiley, 2001.on.

Reference Books:

1. Austin, G.T., Shreve's "Chemical Process Industries", 5th ed., McGraw-Hill, 1998.

2. Srikumar Koyikkal, "Chemical Process Technology and Simulation", PHI Learning Ltd

Course Outcomes					Pı	rogram	Outco	omes					Sp	gram ecific comes
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	3	2	1	3	2	2	2	1	2	2	2	2
CO2	3	3	3	2	1	3	2	2	2	1	2	2	2	3
CO3	3	3	3	2	1	3	2	2	2	1	2	2	2	3
CO4	3	3	3	2	1	3	2	2	2	1	2	2	3	3
CO5	3	3	3	2	1	3	2	2	2	1	2	2	2	3

CH1405	Instrumental Methods of Chemical Analysis	L	Т	Р	С
		3	0	0	3
Objectives					

✓ To know the principle and importance of various analytical instruments used for the characterization of various materials.

mater	lais.	
Course Outc	omes (CO)	
CO1	To Learn About Introduction of Spectrometry	
CO2	To Understand concept of molecular spectroscopy	
CO3	To learn about magnetic resonance spectroscopy and mass spectroscopy	
CO4	To Understand separation methods	
CO5	To learn about electro analysis and surface microscopy	
UNIT – I	INTRODUCTION TO SPECTROSCOPICAL METHODS OF ANALYSIS	9
molecules, va various energ	transmittance and their relationship, permitted energy levels for the electrons of an atom and s rious electronic transitions in organic and inorganic compounds effected by UV, and visible radia by level diagrams of saturated, unsaturated and carbonyl compounds, excitation by UV and voice of solvents, cut off wavelengths for solvents QUALITATIVE ANALYSIS BY UV AND VISIBLE SPECTROCOPY	tions,
	nd epsilon max rules, Woodward -Fieser rules for the calculation of absorption maxima (Lamda ma	-
dienes and car shifts of abso	bonyl compounds, Effects of auxochromes and effects of conjugation on the absorption maxima, Dif rption peaks (Bathochromic, hypsochromic, hypochromic), Instrumentation for UV and Visible neters (source, optical parts, and detectors), Applications of UV and Visible spectroscopy.	
UNIT - III	QUANTITATIVE ANALYSIS BY UV AND VISIBLE SPECTROCOPY	9
and estimatio	's law, limitations, deviations (real, chemical, instrumental), estimation of inorganic ions such as F n of nitrite using Beer -Lambert's law, multicomponent analysis (no overlap, single way overlap and photometric titration (experimental set -up and various types of titrations and their corresponding cur IR SPECTROSCOPY	l two-
and nonlinear	spectroscopy, various stretching, and vibration modes for diatomic and triatomic molecules (both), various ranges of IR (near, mid, fingerprint and far) and their usefulness, Instrumentation (on etectors used in different regions), sample preparation techniques, qualitative analysis of alkanes, alk	ly the

UNIT - V CHROMATOGRAPHIC METHODS

Classification of chromatographic methods, column, thin layer, paper, gas, High Performance Liquid Chromatographical methods (principle, mode of separation and technique).

Total: 45 PERIODS

Text Books:

- 1. Sivasankar B., "Instrumental Methods of Analysis", Oxford University Press, 2012.
- 2. William Kemp, Organic Spectroscopy, 3rd Edition, Palgrave publishers, 2007.

- 1. Douglas A. Skoog, F. James Holler, Stanley R. Crouch, Instrumental Analysis, CENGAGE
- 2. Learning, India, 7th Edition, 2007.
- 3. Willard H.H, Merritt L.L, Dean J.A and Settle F.A, Instrumental method of analysis, 7th edition, Wadsworth Publishing Company, 1988.
- 4. Gurdeep R. Chatwal, Sharma K. Anand, Instrumental methods of Chemical Analysis, Himalaya Publishers, New Delhi, 2014
- 5. John R Dyer, Applications of Absorption Spectroscopy of Organic Compounds, Prenticehall of India Pvt. Ltd., 2012
- 6. Robert M. Silverstein, Francis X. Webstrer, David Kiemle, David L. Bryce, Spectrometric Identification of Organic Compounds, Wiley, 8th Edition, 2010.

Course Outcomes	Program Outcomes									ogram ecific tcomes				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	3	2	1	1	1	1	1	1	3	3	2	3
CO2	3	3	2	3	2	1	1	1	1	1	3	3	2	3
CO3	3	3	1	1	1	1	1	1	1	1	3	3	2	3
CO4	3	3	2	3	1	1	1	1	1	1	3	3	2	3
CO5	3	3	1	1	1	1	1	1	1	1	3	3	2	3

CH1407	Mechanical Operations Laboratory	L	Т	Р	C
	·	0	0	3	2
Objective	28				
√	To learn experimentally to calibrate flow meters, find pressure loss for fluid flows characteristics.	and de	termin	e pum	р
Course C	Putcomes (CO)				
CO1	Determine the size analysis in solid- solid separation systems				
CO2	Capability to select different solid - fluid separation equipments.				
CO3	Evaluate the size reduction and various crushing parameters				
CO4	Estimate the separation characteristics				
CO5	Understand the technical methods related to unit operations in process plant				

LIST OF EXPERIMENTS

- 1. Sieve analysis
- 2. Batch filtration studies using a Leaf filter
- 3. Batch filtration studies using a Plate and Frame Filter press
- 4. Characteristics of batch Sedimentation
- 5. Reduction ratio in Jaw Crusher / Pulverizer/ Hammer Mill
- 6. Reduction ratio in Ball mill
- 7. Separation characteristics of Cyclone separator
- 8. Reduction ratio of Roll Crusher
- 9. Separation characteristics of Elutriator
- 10. Reduction ratio of Drop weight crusher
- 11. Size separation using Sub-Sieving
- 12. Determination of specific surface area using air permeability set up

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

- 1. Sieve shaker
- 2. Leaf filter
- 3. Plate and Frame Filter Press
- 4. Sedimentation Jar
- 5. Jaw Crusher

6. Ball Mill

- 7. Cyclone Separator
- 8. Roll Crusher
- 9. Elutriator
- 10. Drop Weight Crusher

11. Sieves

Total Periods:

60 PERIODS

Course Outcomes					Pr	ogram	Outco	omes					Spe	gram ecific comes
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	2	2	3	1	1	1	1	1	1	1	1	2	2
CO2	2	2	2	3	1	1	1	1	1	1	1	1	2	3
CO3	2	2	2	3	1	1	1	1	1	1	1	1	2	3
CO4	2	2	2	3	2	1	1	1	1	1	1	1	3	3
CO5	2	2	2	3	1	1	1	1	1	1	1	1	2	3

HS1310	Professional Skills Lab	L	Т	Р	С
		0	0	2	1
Objectives	· · · · · · · · · · · · · · · · · · ·				
✓ Enha	ance the Employability and Career Skills of students				
	nt the students towards grooming as a professional				
	e them Employable Graduates				
✓ Deve	elop their confidence and help them attend interviews successfully.				
Course Out	comes (CO)				
CO1	Make effective presentations				
CO2	Participate confidently in Group Discussions				
CO3	Attend job interviews and be successful in them.				
CO4	Develop adequate Soft Skills required for the workplace				
CO5	Develop their speaking skills to enable them speak fluently in real contexts				
UNIT – I					6
Introduction	to Soft Skills- Hard skills & soft skills - employability and career Skills-Grooming a	as a p	rofes	sional	wit
	king an Oral Presentation–Planning and preparing a model presentation; Organizing th				
	and context; Connecting with the audience during presentation; Projecting a positive in	nage	while	e speal	king
<u> </u>	effective body language-General awareness of Current Affairs.				
UNIT - II					6
	ction-organizing the material - Introducing oneself to the audience - introducing the				
	ndividual presentation practice Making a Power Point Presentation Structure a				
	an effective presentation; Body language dynamics. Making an Oral Presentation-Pla				
	entation; Organizing the presentation to suit the audience and context; Connecting with	h the	audie	ence d	urin
	Projecting a positive image while speaking; Emphasis on effective body language				
UNIT - III					6

Introduction to Group Discussion— Participating in group discussions – understanding group dynamics - brainstorming the topic – questioning and clarifying –GD strategies- Structure and dynamics of a GD; Techniques of effective participation in group discussion; Preparing for group discussion; Accepting others' views / ideas; Arguing against others' views or ideas, etc

UNIT - IV

Basics of public speaking; Preparing for a speech; Features of a good speech; Speaking with a microphone. (Famous speeches may be played as model speeches for learning the art of public speaking). Interview etiquette – dress code – body language – attending job interviews– telephone/skype interview -one to one interview &panel interview –Job Interviews: purpose and process; How to prepare for an interview; Language and style to be used in an interview; Types of interview questions and how to answer them.

UNIT - V

Recognizing differences between groups and teams- managing time managing stress- networking professionallyrespecting social protocols understanding career management- developing a long- term career plan making career changes

Total: 30 PERIODS

6

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

- One Server
- 30 Desktop ComputersOne Hand Mike
- One LCD Projector

Reference Books:

- 1. Butterfield, Jeff Soft Skills for Everyone. Cengage Learning: New Delhi, 2015
- 2. E. Suresh Kumar et al. Communication for Professional Success. Orient Blackswan: Hyderabad, 2015
- 3. Raman, Meenakshi and Sangeeta Sharma. Professional Communication. Oxford University Press: Oxford, 2014
- 4. S. Hariharanetal. Soft Skills. MJP Publishers: Chennai, 2010
- 5. Interact English Lab Manual for Undergraduate Students, Orient Balck Swan: Hyderabad, 2016.

Course					P	rogram	n Outco	omes					Program Specific Outcome		
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	0	2	0	2	1	0	0	0	2	3	0	0	1	2	
CO2	0	2	0	2	0	0	0	0	2	3	0	0	1	2	
CO3	0	0	0	0	0	0	0	0	2	2	0	0	1	2	
CO4	0	0	0	0	0	0	0	0	2	2	0	2	1	2	
CO5	0	2	1	1	2	0	2	0	2	3	0	2	1	2	

SEMESTER V

CH1501	Chemical Reaction Engineering I	L	Т	Р	С
		3	0	0	3
Objectives					
The course is	aimed to				
	reaction kinetics, types of reactors, design of reactors, understand the isothermal, nor actors and gain knowledge about non ideal reactors.	nisoth	erma	l opera	ation
Course Outc	omes (CO)				
C01	To understand the kinetics of homogenous reactions				

CO2	To deve	lop per	formar	nce equa	ation ar	nd deter	mine th	e conv	ersion f	or diffe	rent rea	actors		
CO3	To unde	erstand	the des	ign of 1	eactor t	for mul	tiple rea	actions						
CO4	To unde				-									
CO5	To unde	erstand	the resi	idence	time dis	stributio	on funct	ion and	l analyz	the no	on-idea	lity in th	e reactor	•
UNIT – I	KINET	ICS O	F HON	AOGE	NEOU	S REA	CTION	IS						9
Rate equation	, elemen	tary, n	on-eler	nentary	reaction	ons, the	eories o	f reacti	ion rate	e and P	redictio	on; Desig	gn equat	ion for
constant and v	variable v	olume	batch	reactors	s, analy	sis of e	xperim	ental ki	inetics	data, int	tegral a	nd differ	rential a	nalysis.
Half-life calcu														
UNIT – II	IDEAL					-	-							9
Ideal reactor			•				rs - stir	red tan	k and t	tubular	flow re	eactor, re	ecycle re	eactors,
combination o														I
UNIT – III	DESIG													9
Design of reac		-				-	allel an	d mixed	d reaction	ons - fac	ctors af	fecting c	hoice, oj	otimum
yield and conv				-	-									
	TEMP													9
Non-isotherma	-			-						-				-
for constant r	-		onstant	heat t	ransfer	coeffic	ient, op	peration	n of bat	ch and	contin	uous rea	ctors, op	otimum
temperature pr	-													
UNIT – V	NON II													9
The residence								ne funct	tions an	d relatio	onshipl	between	them in	reactor;
Models for no	n-ideal r	eactors,	conve	rsion ir	non-id	leal read	ctors.							
											r	Fotal:	45 PEF	RIODS
Text Books:														
1. O. Levensp				•	•				•				_	
2. H.S. Fogler					-	-	-							
3. Lanny D. S	chmidth	The En	gineer	ing of C	Chemica	al Reac	tions, S	econd I	Edition,	Oxford	l Unive	rsity Pre	ss, 2005	
Reference Bo	oks:													
1. L.K Dorai	swamy	DenizL	Iner C	hemica	l Reacti	on Fno	ineerin	o Bevo	nd the f	fundame	entals (CRC Pre	<u>ss 2014</u>	1
2. G.Fronme	•					•		•••						r
3. J.M.Smith						•		Ũ		•		1777		
0 . 9 .101.511111		ai Engi	neering	Sittiliet	ies, 111		1011, 1010	Oluw		W IOIK	1701		Pro	gram
Course					Pı	rnoram	o Outco	mes						ecific
						1051 am	I Outco	mes					-	comes
Outcomes		2	3	4	5	6	7	8	9	10	11	12	1	2
Outcomes	1	4		2	1	3	1	o 1	1	1	1	12	3	2
	1 3	3	1			5	- -	I [⊥]	-	-	· *	-	5	1.
CO1	3	3	3		1	3	1	1	1	1	1	1	3	
CO1 CO2	3 3	3	3	2	1	3	1	1	1	1	1	1	3	2
CO1 CO2 CO3	3 3 3	3 3	3 2	2 2	1	3	1	1	1	1	1	1	3	2 2
CO1 CO2	3 3	3	3	2										2

CH1502	Heat Transfer	L	Т	Р	С
		3	0	0	3
Objectives					
The course is					
	the fundamental concepts of heat transfer viz., conduction, convection, radiation	i, boi	ling	and	
Course Out	lensation and its application to the students				
Course Out	To familiarize the students with the fundamental concepts of Heat Transfer. prov	vide t	ha ct	udent	with
COI	knowledge about heat transfer by conduction in solids for steady state	/lue t	ne si	uuem	witti
CO2	Students will understand convective heat transfer and use of heat transfer coeffic	ients	for 1	amina	r and
002	turbulent flows	lents	101 1	ummu	und
CO3	Students will understand radiative heat transfer including blackbody radiation and K	ircho	ff'sla	w,and	will
	be able to solve radiative problems apply knowledge of heat transfer to solve				
	problems			C	U
CO4	Students will be able to calculate and use overall heat transfer coefficients in design	ning l	neat e	exchan	gers
CO5	The course provides the student with knowledge about heat transfer with phase	chan	ge (ł	oiling	and
	condensation) and evaporation				
UNIT – I	BASIC CONCEPTS & CONDUCTIVE HEAT TRANSFER				9
-	of heat transfer in Chemical Engineering operations - Modes of heat transfer - Mean te	-			
-	eat conduction - Fourier's law of heat conduction - One dimensional steady state hea			-	
-	hollow cylinder, hollow sphere – Heat conduction through a series of resistances - A				
	low of electricity - Effect of temperature on thermal conductivity- Conduction throug		uids-	Indiv	idual
	eat transfer coefficients and the relationship between them - Transient heat conduction	m.			0
UNIT – II	CONVECTION		1	:	9
-	eat transfer by convection - Natural and forced convection - Application of dimensio Equations for forced convection under laminar, transition and turbulent conditions -		-		tumo 1
	Heat transfer from condensing vapors- Heat transfer to boiling liquids - Influence of	-			
	- Heat transfer to molten metals – Heat transfer in packed and fluidized beds.	Jouin	uai y	layer (/11
UNIT – III	RADIATION				9
	hermal radiations - Black body concept - Stefan Boltzman's law - Emissive power –	Blac	k bod	lv radi	
-	- Plank's Law - Radiation between black surfaces - Gray surfaces - Radiation			-	
Applications	-				
UNIT – IV	HEAT EXCHANGERS				9
Parallel and	counter flow heat exchangers - Log mean temperature difference - Single pass	s and	mu	ltipass	heat
Exchangers-	Plate Heat Exchangers-Use of correction factor charts- Heat Exchangers Effectivenes	ss-Nu	mber	r of tra	nsfer
unit - Chart f	for different configurations - Fouling factors and Wilson's plot - Design of various typ	es of	heat	exchai	ngers
- Design of c	-				
UNIT – V	EVAPORATION				9
• •	poration - Single effect and multiple effect evaporation - Design calculation for single			-	
-	Boiling Point Elevation - Effect of Liquid Head - Capacity and Economy of multiple	effe	ct eva	aporate	ors -
Evaporation	Equipments.		45 1	DEDI	
Torrt Daal	Tot	al:	45	PERIC	JD2
Text Books:	J. P., 'Heat Transfer', 8th Edn., McGraw Hill, 1997.				
	L. N., Heat Transfer: A Basic Approach, McGraw-Hill, 1984				
)., "Process Heat Transfer ", McGraw-Hill, 1999.				
J. 110111, D.C	2, 1100000 11000 1100010, 11000100 1100, 1777.				

Reference Books:

- 1. McCabe, W.L., Smith, J.C., and Harriot, P., "Unit Operations in Chemical Engineering",6th Edn., McGraw-Hill, 2001.
- 2. Coulson, J.M. and Richardson, J.F., "Chemical Engineering " Vol. I, 4th Edn., Asian Books Pvt. Ltd., India, 1998

Course Outcomes					Pı	rogram	Outco	mes						Progi Spec Jutco	ific
	1	2	3	4	5	6	7	8	9	10	11	12	1		2
CO1	3	3	3	2	1	3	1	1	1	1	1	1	3		2
CO2	3	3	3	2	1	3	1	1	1	1	1	1	3		2
CO3	3	3	2	2	1	3	1	1	1	1	1	1	3		2
CO4	3	3	2	2	1	1	1	1	1	1	1	1	3		2
CO5	3	3	2	1	1	1	1	1	1	1	1	1	3		2
CH1503					Mas	s Tran	sfer I					L 3	Т 0	P 0	C 3
Objectives The course is	aimed to														
	n and dete		mass tra	ansfer r	ates un	der lam	inar and	d turbul	lent cor	nditions	and ap	ply thes	e con	cepts	in
	esign of hu										1	1 5		1	
Course Outo	·														
CO1	To unde				• •						-				
CO2	To unde							-		-	e mass	transfer			
CO3	To unde						-			ation					
CO4	To unde			-			•	•							
CO5	To unde			-		lization	n proces	s and io	dentific	ation of	f suitab	le crysta	llizer		1
	MOLE	CULA	R DIFI	FUSIO											9
UNIT – I	ــــــــــــــــــــــــــــــــــــــ										b Diff	icivity n	109611	romo	nt and
Introduction prediction; m	ulti-comp	oonent o	diffusio	n						nd solid	IS. DIIII	isivity ii	icasu	Tenne	
Introduction prediction; m UNIT – II	ulti-comp	onent o	diffusio / E & I	n NTERF	PHASE	MASS	5 TRAN	NSFER	1						9
Introduction prediction; m UNIT – II Eddy diffusio	ulti-comp CONV	oonent of ma	diffusio / E & I ass trans	n NTERF sfer coe	PHASE efficien	ts, theo	STRAN	NSFER nass tra	ansfer,	differer	nt transp	port anal	ogies	,	9
Introduction prediction; m UNIT – II Eddy diffusio application o	tulti-comp CONV on, concep f correlati	ECTIV ECTIV ot of ma	diffusio / E & I ass trans mass tr	n NTERF sfer coe ransfer	PHASE efficien coeffic	ts, theorients, in	5 TRAN ries of 1 nter pha	NSFER mass tra se mas	ansfer, s transf	differer er, relat	nt transp tionship	oort anal	ogies	,	9
Introduction prediction; m UNIT – II Eddy diffusion application o overall mass	ulti-comp CONV on, concep f correlati transfer co	ECTIV ECTIV ot of ma ons for oefficie	diffusio / E & I ass trans mass tr ents. NT	n NTERF sfer coe ransfer ΓU and	PHASE efficien coeffic NTP co	ts, theorients, ir	5 TRAN ries of 1 nter pha , Stage-	NSFER nass tra se mass wise an	ansfer, s transf nd diffe	differer er, relater	nt transp tionship	oort anal	ogies	,	9 al and
Introduction prediction; m UNIT – II Eddy diffusio application o overall mass UNIT – III	transfer complexity of the second sec	Donent of ECTIV Dot of ma lons for DIFIC	diffusio / E & I ass trans mass tr ents. NT ATION	n NTERI sfer coe ransfer ΓU and [& DE	PHASE efficien coeffic NTP co	ts, theorients, in oncepts	5 TRAN ries of 1 nter pha , Stage- ICATIO	NSFER mass tra se mass wise an ON OP	ansfer, s transf nd diffe ERAT	differer er, relat erential IONS	t transp tionship contrac	oort anal betwee tors.	ogies n ind	, ividu	9 al and 9
Introduction prediction; m UNIT – II Eddy diffusio application o overall mass UNIT – III Humidificatio	tulti-comp CONV on, concep f correlati transfer co HUMII on – Equi	ECTIV ECTIV ot of ma ons for oefficie DIFICA	diffusio / E & I ass trans mass tr ass trans mass tr ents. NT ATION a, humic	n NTERF sfer coe ransfer TU and & DE dity cha	PHASE efficien coeffic NTP co - HUN art, adia	MASS ts, theorients, in oncepts MIDIF	5 TRAN ries of 1 nter pha , Stage- ICATIC nd wet	NSFER nass tra se mass wise an ON OP bulb te	ansfer, s transf nd diffe ERAT mperat	differer fer, relat rential IONS ures; hu	nt transp tionship contrac umidific	port anal betwee tors. cation op	ogies n ind	, ividu	9 al and 9
Introduction prediction; m UNIT – II Eddy diffusion application o overall mass	tulti-comp CONV on, concep f correlati transfer co HUMII on – Equi	ECTIV of of ma ons for oefficie DIFICA librium	diffusio / E & I ass trans mass tr ass trans mass tr ents. NT ATION a, humic	n NTERF sfer coe ransfer TU and & DE dity cha	PHASE efficien coeffic NTP co - HUN art, adia	MASS ts, theorients, in oncepts MIDIF	5 TRAN ries of 1 nter pha , Stage- ICATIC nd wet	NSFER nass tra se mass wise an ON OP bulb te	ansfer, s transf nd diffe ERAT mperat	differer fer, relat rential IONS ures; hu	nt transp tionship contrac umidific	port anal betwee tors. cation op	ogies n ind	, ividu	9 al and 9

Drying – Equilibrium. Classification of dryers, batch drying – Mechanism and time of cross through circulation drying, theoretical estimation of drying rate and time. Continuous dryers – material and energy balance. Advance drying techniques such as freeze drying, microwave drying.

UNIT – V CRYSTALLIZATION

Crystal geometry. Equilibrium, yield and purity of products, theory of super saturation, nucleation and crystal growth, classification of crystallizers, design of batch crystallizers and continuous crystallizers.

Total: 45 PERIODS

9

Text Books:

- 1. Treybal, R. E., "Mass Transfer Operations", 3rd Edition, McGraw-Hill, 1981.
- 2. Geankoplis, C.J., "Transport Processes and Unit Operations", 4th Edition, Prentice HallInc., NewJersey, 2003.
- Narayanan K.V. and Lakshmikutty, B "Mass Transfer Theory and Applications", 1st Edition, CBS Publishers & Distributors Pvt Ltd, New Delhi, 2014.

Reference Books:

- 1. McCabe, W.L., Smith, J.C., and Harriot, P., "Unit Operations in Chemical Engineering", 7th Edition., McGraw-Hill, 2005.
- Coulson, J.M. and Richardson, J.F., "Chemical Engineering" Vol. I and II, 4th Edition, Asian Books Pvt. Ltd., India, 1998.
- 3. Seader J.D. and Henley E.J., "Separation Process Principles", 2nd Ed., John Wiley, 2006

Course Outcomes						Pro Out	ogram comes						Spe	gram ecific comes
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	3	2	1	3	1	1	1	1	1	1	3	2
CO2	3	3	3	2	1	3	1	1	1	1	1	1	3	2
CO3	3	3	2	2	1	3	1	1	1	1	1	1	3	2
CO4	3	3	2	2	1	1	1	1	1	1	1	1	3	2
CO5	3	3	2	1	1	1	1	1	1	1	1	1	3	2

CH1507	Heat and Mass Transfer Laboratory	L	Т	Р	С
		0	0	3	2
Objectives	3				
The course	e is aimed to				
	Develop sound practical knowledge for students on different types of heat transfer				
\checkmark	Develop sound practical knowledge for students on different types of mass transfe	r equip	ments		
Course O	utcomes (CO)				
CO1	Apply the concepts of heat transfer and fluid dynamics to the operation of heat tr	ansfer	equipn	nents.	
CO2	Estimate the heat transfer rate and heat transfer co-efficient				
CO3	Determine the diffusivity practically and compare the results with the empirical of	correlat	ions.		
CO4	Estimate the mass transfer rate and mass transfer co-efficient				
CO5	Evaluate the performance/calculate the parameters in different distillation proces	ses			

LIST OF EXPERIMENTS

- 1. Heat Transfer in a Double Pipe Heat Exchanger
- 2. Heat transfer by Forced / Natural Convection
- 3. Batch drying kinetics using Tray Dryer
- 4. Heat Transfer in Helical column
- 5. Heat Transfer through Packed Bed
- 6. Heat Transfer through bare type heat exchanger
- 7. Heat Transfer through finned type heat exchanger
- 8. Drying characteristics of Vacuum Dryer
- 9. Drying characteristics of Rotary dryer
- 10. Measurement of diffusivity
- 11. Surface evaporation
- 12. Mass transfer coefficient determination by Wetted wall column

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

- 1. Double pipe Heat Exchanger
- 2. Tray drier
- 3. Helical column
- 4. Packed Bed
- 5. Bare type heat exchanger
- 6. Finned type heat exchanger
- 7. Vacuum Dryer
- 8. Rotary dryer
- 9. Diffusivity set-up
- 10. Surface evaporation set-up
- 11. Wetted wall column set-up

										Total I	Periods	s: (50 PER	IODS
Course Outcomes					Pr	ogram	Outco	omes					Spe	gram ecific comes
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	1	1	1	2	1	2	1	2	3	2	1	2	1
CO2	1	2	3	2	1	2	1	2	1	2	1	1	2	1
CO3	2	2	1	2	1	2	1	1	1	2	1	2	1	1
CO4	1	1	1	2	1	2	1	1	2	2	1	2	1	1
CO5	1	2	1	2	3	1	2	1	1	2	1	1	2	1

CH1508	Computational Programming Laboratory for Chemical Engineers	L	Т	Р	С
		0	0	3	2
Objectives	3	-			
The course	e is aimed to				
\checkmark	To give the students an understanding the fundamentals concepts in mathematics,	problei	ns sol	ving a	nd
1	computer programming.				
Course Or	utcomes (CO)				
CO1	Solving chemical engineering problems using different tools available in the exc	cel softv	vare		
CO2	Solving simultaneous equation and differential equation using polymath				
CO3	Simulation of simple chemical process with controller using simulink tool				
CO4	Estimation of fluid property and understand the unit operation simulation using	Aspen I	Plus		
CO5	Dynamic simulation of chemical process using aspen plus				

Suggested Exercises

- 1. Equations of state using Newton's method
- 2. Regression for parameter estimation using a set of data points
- 3. Equilibrium flash distillation (Multicomponent Ideal)
- 4. Batch Reactor
- 5. CSTR in Series Stage wise contacting equipment
- 6. Solving a simple flow sheet by simultaneous approach
- 7. Simulation of batch Distillation (binary ideal).
- 8. Gravity Flow Tank
- 9. Heat Exchanger
- 10. Plug Flow Reactor
- 11. Absorber

Specific examples in ASPEN/HYSYs/MATLAB/EXCEL

- 1. Solving equation of state, regression of parameters using EXCEL/MATLAB
- 2. Calculation of Reynolds number, friction factor and pressure drop using EXCEL/MATLAB
- 3. Calculation of heat transfer coefficient in a Heat Exchanger using EXCEL/MATLAB
- 4. Calculation of minimum Reflux ratio for binary/tertiary system in a fractionator using EXCEL/MATLAB
- 5. Calculation of HTU and NTU in a Absorber using EXCEL/MATLAB
- 6. Calculation of Antoine's coefficient using EXCEL/MATLAB
- 7. Estimation of settling velocity of solids in liquids using Stoke's law using EXCEL/MATLAB
- 8. Calculation of minimum number of stages in a distillation column using EXCEL/MATLAB
- 9. Solving mass and energy balance problems using EXCEL/MATLAB
- 10. Calculation of Power in Reciprocating compressor using EXCEL/MATLAB
- 11. Steady state simulation of Heat Exchanger using ASPEN PLUS/ HYSYS
- 12. Steady state simulation of a CSTR using ASPEN PLUS/ HYSYS
- 13. Steady state simulation of Flash vessel using ASPEN PLUS/ HYSYS
- 14. Steady state simulation of Distillation Column using ASPEN PLUS/ HYSYS
- 15. Steady state simulation of an Absorption column using ASPEN PLUS/ HYSYS
- 16. Dynamic simulation of Heat Exchanger using ASPEN PLUS/ HYSYS
- 17. Dynamic simulation of a CSTR using ASPEN PLUS/HYSYS
- 18. Dynamic simulation of Flash vessel using ASPEN PLUS/ HYSYS
- 19. Dynamic simulation of Distillation Column using ASPEN PLUS/ HYSYS
- 20. Dynamic simulation of an Absorption column using ASPEN PLUS/ HYSYS

TEXT BOOKS:

- 1. Bequette. B.W, "Process Dynamics": Modelling, Analysis and Simulation," Prentice Hall (1998)
- 2. Himmelblau. D.M. and Bischoff. K.B, "Process Analysis and Simulation", Wiley, 1988.
- 3. Strang.G., "Introduction to Linear Algebra", Cambridge Press, 4th edition, 2009.
- 4. William. Luyben, "Process Modelling, simulation and control for Chemical Engineers, 2nd Edn., McGraw Hill International Editions, New York, 1990

Total Periods:

45 PERIODS

5. Chapra.S.C. and Canale.R.P. "Numerical Methods for Engineers", McGraw Hill, 2001.

Course Outcomes					Pr	ogram	Outco	omes						gram ecific comes
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1	2	1	2	3	1	3	1	2	3	2	1	2	1
CO2	2	3	1	2	1	3	2	2	1	2	1	1	2	1
CO3	1	3	2	1	1	2	1	1	1	2	1	2	1	1
CO4	2	2	1	3	2	1	1	1	2	2	1	2	1	1
CO5	3	1	2	1	2	1	2	1	1	2	1	1	2	1

<u>SEMESTER VI</u>

	Chemical Reaction Engineering II	L	Т	Р	C
		3	1	0	4
Objectives	`				
The course is	aimed to				
	n gas solid non catalytic, gas solid catalytic and fluid-fluid reaction and apply the know	wledg	ge for	the	
	ordesign.				
Course Outo		<u> </u>			
CO1	To understand the gas solid non catalytic reaction and different models for non-cata	-	reac	ction.	
CO2	To understand catalyst, catalyst preparation, property estimation and isotherm stud	ly.			
CO3	To understand the gas solid catalytic reaction and their mechanism				
CO4	To design of catalytic reactor for gas solid reaction.				
CO5	To understand the concept of Mass Transfer and Mass transfer with reaction for flu	uid f	uid r	eactio	n ai
	tower design.				
UNIT – I	FLUID SOLID NON CATALYTIC KINETICS				12
	n catalytic reaction. Reaction kinetics, Shrinking Core Model and Progressive conver				
-	esistances (diffusion through gas film, ash layer and chemical reaction controlling), r	rate c	ontro	olling	step
time for Con	plete Conversion for Single and Mixed Sizes, design of fluid –particle reactors.				
UNIT – II	CATALYSIS & ADSORPTION				1
•	l adsorption: physical properties of catalyst, surface area, void volume, solid density,				
determination	n, catalyst classification and preparation, catalyst promoters, catalyst inhibitors, catal	lyst p	oison	IS.	
Adsorption Is	sotherms Freundlich and Langumir isotherms.				
	KINETICS OF CATALYTIC REACTIONS				1
UNIT – III					_
	alytic reaction: steps in catalytic reaction, Single site, dual site mechanisms, Langmu	ir Hi	nshel	wood	, Ra
Gas solid cat					, Ra
Gas solid cat controlling st	alytic reaction: steps in catalytic reaction, Single site, dual site mechanisms, Langmu				, Ra
Gas solid cat controlling st UNIT – IV	alytic reaction: steps in catalytic reaction, Single site, dual site mechanisms, Langmu reps. Experimental methods for determining rate, differential, integral reactor and rea	actor	deig	n	
Gas solid cat controlling st UNIT – IV Diffusion Wi	alytic reaction: steps in catalytic reaction, Single site, dual site mechanisms, Langmu reps. Experimental methods for determining rate, differential, integral reactor and rea FLUID SOLID CATALYTIC KINETICS	actor	deig	n	
Gas solid cat controlling st UNIT – IV Diffusion Wi Modulus, Efi	alytic reaction: steps in catalytic reaction, Single site, dual site mechanisms, Langmu teps. Experimental methods for determining rate, differential, integral reactor and rea FLUID SOLID CATALYTIC KINETICS thin Catalyst Particle, Mass and Heat Transfer Within Catalyst Pellets, Effectiveness	actor	deig	n	1
Gas solid cat controlling st UNIT – IV Diffusion Wi Modulus, Eff UNIT – V	alytic reaction: steps in catalytic reaction, Single site, dual site mechanisms, Langmu reps. Experimental methods for determining rate, differential, integral reactor and rea FLUID SOLID CATALYTIC KINETICS thin Catalyst Particle, Mass and Heat Transfer Within Catalyst Pellets, Effectiveness fectiveness factor for non-isothermal condition.	actor 5 Fact	deig	n	1
Gas solid cat controlling st UNIT – IV Diffusion Wi Modulus, Eff UNIT – V Fluid-Fluid r	alytic reaction: steps in catalytic reaction, Single site, dual site mechanisms, Langmu eps. Experimental methods for determining rate, differential , integral reactor and rea FLUID SOLID CATALYTIC KINETICS thin Catalyst Particle, Mass and Heat Transfer Within Catalyst Pellets, Effectiveness fectiveness factor for non-isothermal condition. FLUID -FLUID KINETICS	actor s Fact	deign	n 'hiele	1
Gas solid cat controlling st UNIT – IV Diffusion Wi Modulus, Eff UNIT – V Fluid-Fluid r absorptionco	alytic reaction: steps in catalytic reaction, Single site, dual site mechanisms, Langmu reps. Experimental methods for determining rate, differential , integral reactor and rea FLUID SOLID CATALYTIC KINETICS thin Catalyst Particle, Mass and Heat Transfer Within Catalyst Pellets, Effectiveness fectiveness factor for non-isothermal condition. FLUID -FLUID KINETICS eaction. Kinetics and design of Fluid-Fluid Reactions. Rate equation, Kinetic regime	actor s Fact	deign	n 'hiele	1
controlling st UNIT – IV Diffusion Wi Modulus, Eff UNIT – V Fluid-Fluid r absorptionco select the	alytic reaction: steps in catalytic reaction, Single site, dual site mechanisms, Langmu reps. Experimental methods for determining rate, differential , integral reactor and rea FLUID SOLID CATALYTIC KINETICS thin Catalyst Particle, Mass and Heat Transfer Within Catalyst Pellets, Effectiveness fectiveness factor for non-isothermal condition. FLUID -FLUID KINETICS eaction. Kinetics and design of Fluid-Fluid Reactions. Rate equation, Kinetic regime	actor s Fact	deign	n 'hiele	1

Text Books:

- 1. J.M.Smith Chemical Engineering Kinetics, Third Edition, Mc Graw Hill New York 1981
- 2. O. Levenspiel, Chemical Reaction Engineering, Third Edition, John Wiley 1999
- 3. H.S. Fogler, Elements of Chemical Reaction Engineering, Third Edition, Prentice Hall of India, 1999

- 1. Lanny D. Schmidt The Engineering of Chemical Reactions, Second Edition, Oxford University Press, 2005
- 2. L.K Doraiswamy, DenizUner, Chemical Reaction Engineering Beyond the fundamentals, CRC Press, 2014
- 3. G.F. Froment, K.B.Bischoff Chemical Reactor Analysis and Design , John Wiley and Sons, 1979

Course Outcomes						Pro Out	ogram comes							ogram ecific comes
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	1	1	1	2	1	2	1	2	3	2	1	2	1
CO2	1	2	3	2	1	2	1	2	1	2	1	1	2	1
CO3	2	2	1	2	1	2	1	1	1	2	1	2	1	1
CO4	1	1	1	2	1	2	1	1	2	2	1	2	1	1
CO5	1	2	1	2	3	1	2	1	1	2	1	1	2	1

CH1602	Mass Transfer II	L	Т	Р	C
		3	0	2	4
Objectives					
The course is	aimed to				
their	rt knowledge on how certain substances undergo the change in composition, change properties according to the changed environment. Also, to design absorber and stripper ction and leaching equipment and adsorber.	-			
Course Outo	comes (CO)				
CO1	To understand concept and determine the theoretical stages, number of transf requirements for a gas absorption process	er ur	nits a	and he	eight
CO2	To identify the suitable distillation techniques, determine the number of trays for st determine the height of the packed tower.	tage v	vise	contac	t and
CO3	To apply the ternary equilibrium diagram concepts to determine the number of separation of liquid-liquid extraction process.	f stag	ges r	equire	d fo
CO4	To describe core principles of leaching, setting up mass balances, use graphical me number of ideal stages in leaching operation.	thod	s to e	estimat	te the
CO5	To understand the concept of adsorption techniques, various isotherms and ion excl	hange	e pro	cess	
UNIT – I	ABSORPTION			9+6	
characteristic coefficients; Lab Compo	actor, Equipments in gas liquid operations, design of packed and plate type absorbers so of stage wise and differential contactors, concepts of NTU, HTU and overall volum Absorption with chemical reaction. nent rudy the Packed bed Absorber				fer

UNIT – II	DISTI	LLATI	ON											9 + 6
Vapour liquid														
differential dis					-							•	•	
Thiele method		action to	o Ponch	nan - Sa	avarit m	ethod,	Total re	eflux, m	inimun	n reflux	ratio, c	optimum	reflux r	atio.
Lab Compon		. 1	a.	1.D	1 1 1		1							
• To stu UNIT – III	idy the S LIQUI	-					1 colum	n						9 + 6
Equipments us		•					1 contac	t oquin	mont	2	alzad ar	nd maah		5+0
gitated conta														wice
ontact – parti					•		-				lection	01 50170	in, stuge	WISC
Lab Compon	•			,			••••	•••••••		lion				
-	idy the L	.iquid-L	liquid e	xtractio	on and I	RDC E	xtractor							
UNIT – IV	LEAC	HING	-											9+6
Single stage le	eaching.	Solid-li	quid ec	uilibria	a- leach	ing equ	ipment	for bat	ch and	continu	ous ope	erations,	calculat	ion of
number of stag														
current multip			k's sys	tem), m	nulti sta	ge cont	inuous	cross ci	irrent a	nd cour	ntercurr	ent leach	ning, sta	ge
calculations, s	÷	ciency.												
Lab Compon			6 G .											
×	rimental		Ũ	Ũ		0						0070		
JNIT – V	ADSO		-			-								9 + 6
Adsorption - 7														
dsorption iso														
	Colid one	1 liquid	memhr	anes: c	oncept	of osm	osis: rev	verse os	mosis;	electro	dialysis	s; ultrafi	ltration,	
. .		-			oncept				,		, J			
nembrane dis	stillation,	-			oncept				,		J			
membrane dis Lab Compon	tillation, e nt	, recent	develoj	pment.	oncept						j.			
membrane dis Lab Compon	stillation,	, recent	develoj	pment.							-			
nembrane dis L ab Compon • Adsor	tillation, e nt	, recent	develoj	pment.							-	Fotal:	75 PER	RIODS
nembrane dis Lab Compon • Adsor Fext Books:	tillation, ent rption stu	, recent	develoj ing Sil	pment. ica gel	-						-		75 PEF	RIODS
nembrane dis Lab Compon • Adsor Fext Books:	tillation, ent rption stu	, recent	develoj ing Sil	pment. ica gel	-						-		75 PER	RIODS
nembrane dis Lab Compon • Adsor Fext Books: 1. Treybal, R.	tillation, eent rption stu .E., "Ma:	, recent udies us	develop	pment. ica gel erations	5 ", 3rd	Edn., N	ИсGraw	-Hill, 1	981.]	Fotal:		
nembrane dis Lab Compon • Adsor Fext Books: 1. Treybal, R. 2. Geankoplis	tillation, nent rption stu .E., "Ma: s, C.J., "	, recent udies us ss Trans Franspo	develop ing Sil	pment. ica gel erations esses ar	s ", 3rd nd Unit	Edn., N Operat	лсGraw ions", 4	-Hill, 1 th Editi	981.]	Fotal:		
nembrane dis Lab Compon • Adsor Fext Books: I. Treybal, R. 2. Geankoplis	tillation, nent rption stu .E., "Ma: s, C.J., "	, recent udies us ss Trans Franspo	develop ing Sil	pment. ica gel erations esses ar	s ", 3rd nd Unit	Edn., N Operat	лсGraw ions", 4	-Hill, 1 th Editi	981.]	Fotal:		
 membrane dis Lab Compon Adsor Fext Books: Treybal, R. Geankoplis Wankat, P. 	tillation, eent rption stu .E., "Maa s, C.J., " , "Equili	, recent udies us ss Trans Franspo	develop ing Sil	pment. ica gel erations esses ar	s ", 3rd nd Unit	Edn., N Operat	лсGraw ions", 4	-Hill, 1 th Editi	981.]	Fotal:		
 nembrane dis Lab Compon Adsor Fext Books: I. Treybal, R. 2. Geankoplis 3. Wankat, P. Reference Bo 	tillation, nent rption stu E., "Mas s, C.J., "" , "Equili poks:	, recent adies us ss Trans Franspo brium S	develop ing Sil sfer Op ort Proce Stage Se	pment. ica gel erations esses an eparatic	s ", 3rd nd Unit ons", Pr	Edn., N Operat entice I	AcGraw ions", 4 Hall, 19	-Hill, 1 th Editi 93.	981. ion, Pre	ntice H	allInc.,	Fotal:	sey, 200)3.
 nembrane dis Lab Compon Adsor Fext Books: Treybal, R. Geankoplis Wankat, P. Reference Bool McCabe, Text 	tillation, nent rption stu E., "Mas s, C.J., "" , "Equili poks:	, recent adies us ss Trans Franspo brium S	develop ing Sil sfer Op ort Proce Stage Se	pment. ica gel erations esses an eparatic	s ", 3rd nd Unit ons", Pr	Edn., N Operat entice I	AcGraw ions", 4 Hall, 19	-Hill, 1 th Editi 93.	981. ion, Pre	ntice H	allInc.,	Fotal:	sey, 200)3.
 nembrane dis Lab Compon Adsor Fext Books: Treybal, R. Geankoplis Wankat, P. Reference Bool McCabe, 2005. 	tillation, nent rption stu .E., "Maa s, C.J., " , "Equili ooks: W.L., Sr	, recent udies us ss Trans Franspo brium S nith, J.C	develop ing Sil sfer Op ort Proce Stage Se C., and I	pment. ica gel erations esses an eparatic Harriot,	s ", 3rd nd Unit ons", Pr	Edn., M Operat entice I nit Ope	AcGraw ions", 4 Hall, 19 rations	7-Hill, 1 th Editi 93.	981. ion, Pre	ontice H	allInc., ng", 7tl	Fotal:	sey, 200)3.
 nembrane dis Lab Compon Adsor Fext Books: Treybal, R. Geankoplis Wankat, P. Reference Bool McCabe, 2005. Seader J.I. 	tillation, nent rption stu E., "Mas s, C.J., " , "Equili ooks: W.L., Sr D. and H	, recent udies us ss Trans Franspo brium S nith, J.C enley E	develop ing Sil sfer Op ort Proce Stage Se C., and I .J., "Se	pment. ica gel erations esses an eparatic Harriot, paratio	s ", 3rd nd Unit ons", Pr , P., "Un	Edn., N Operat entice I nit Ope	AcGraw ions", 4 Hall, 19 rations	-Hill, 1 th Editi 93. in Chen 2nd Ed	981. ion, Pre	ontice H	allInc., ng", 7tl	Fotal:	sey, 200)3.
 nembrane dis Lab Compon Adsor Fext Books: Treybal, R. Geankoplis Wankat, P. Reference Bool McCabe, 2005. Seader J.I. 	tillation, nent rption stu E., "Mas s, C.J., " , "Equili ooks: W.L., Sr D. and H	, recent udies us ss Trans Franspo brium S nith, J.C enley E	develop ing Sil sfer Op ort Proce Stage Se C., and I .J., "Se	pment. ica gel erations esses an eparatic Harriot, paratio	s ", 3rd nd Unit ons", Pr , P., "Un	Edn., N Operat entice I nit Ope	AcGraw ions", 4 Hall, 19 rations	-Hill, 1 th Editi 93. in Chen 2nd Ed	981. ion, Pre	ontice H	allInc., ng", 7tl	Fotal:	sey, 200)3.
 nembrane dis Lab Compon Adsor Fext Books: Treybal, R. Geankoplis Wankat, P. Reference Bool McCabe, 2005. Seader J.I. 	tillation, nent rption stu E., "Mas s, C.J., " , "Equili ooks: W.L., Sr D. and H	, recent udies us ss Trans Franspo brium S nith, J.C enley E	develop ing Sil sfer Op ort Proce Stage Se C., and I .J., "Se	pment. ica gel erations esses an eparatic Harriot, paratio	s ", 3rd nd Unit ons", Pr , P., "Un	Edn., N Operat entice I nit Ope	AcGraw ions", 4 Hall, 19 rations	-Hill, 1 th Editi 93. in Chen 2nd Ed	981. ion, Pre	ontice H	allInc., ng", 7tl	Fotal:	n, McGra)3. aw-Hil
 nembrane dis Lab Compon Adsor Fext Books: Treybal, R. Geankoplis Wankat, P. Reference Bool McCabe, 2005. Seader J.I. King,C.J., 	tillation, nent rption stu E., "Mas s, C.J., " , "Equili ooks: W.L., Sr D. and H	, recent udies us ss Trans Franspo brium S nith, J.C enley E	develop ing Sil sfer Op ort Proce Stage Se C., and I .J., "Se	pment. ica gel erations esses an eparatic Harriot, paratio	s ", 3rd nd Unit ons", Pr , P., "Un n Proce n.,Tata	Edn., N Operat entice I nit Ope ss Prino McGra	AcGraw ions", 4 Hall, 19 rations ciples", w-Hill1	-Hill, 1 th Editi 93. in Chen 2nd Ed 980	981. ion, Pre	ontice H	allInc., ng", 7tl	Fotal:	rsey, 200)3. aw-Hil
 nembrane dis Lab Compon Adsor Fext Books: Treybal, R. Geankoplis Wankat, P. Reference Boo McCabe, 2005. Seader J.I. King,C.J., Course	tillation, nent rption stu E., "Mas s, C.J., " , "Equili ooks: W.L., Sr D. and H	, recent udies us ss Trans Franspo brium S nith, J.C enley E	develop ing Sil sfer Op ort Proce Stage Se C., and I .J., "Se	pment. ica gel erations esses an eparatic Harriot, paratio	s ", 3rd nd Unit ons", Pr , P., "Un n Proce n.,Tata	Edn., N Operat entice I nit Ope ss Prino McGra	AcGraw ions", 4 Hall, 19 rations	-Hill, 1 th Editi 93. in Chen 2nd Ed 980	981. ion, Pre	ontice H	allInc., ng", 7tl	Fotal:	rsey, 200 n, McGra Pro Sp)3. aw-Hil ogram ecific
 nembrane dis Lab Compon Adsor Fext Books: Treybal, R. Geankoplis Wankat, P. Reference Bool McCabe, 2005. Seader J.I. King,C.J., 	tillation, nent rption stu E., "Mas s, C.J., " s, C.J., " rEquili ooks: W.L., Sr D. and H ,"Separa	, recent adies us ss Trans Franspo brium S nith, J.C enley E tionPro	develop ing Sil sfer Op ort Proce Stage So C., and I .J., "Se cesses"	pment. ica gel erations esses an eparation Harriot, paration ,2ndEd	s ", 3rd nd Unit ons", Pr , P., "Un n Proce n.,Tata Pr	Edn., N Operat entice I nit Ope ss Princ McGra	AcGraw ions", 4 Hall, 19 rations ciples", w-Hill1	-Hill, 1 th Editi 93. in Chen 2nd Ed 980 mes	981. ion, Pre nical E1 ., John	ntice H ngineeri Wiley,	7 allInc., ng", 7tl 2006.	Fotal:	n, McGra)3. aw-Hil ogram ecific comes
 nembrane dis Lab Compon Adsor Fext Books: Treybal, R. Geankoplis Wankat, P. Reference Bool McCabe, 2005. Seader J.I. King,C.J., Course Outcomes 	tillation, nent rption stu E., "Mas s, C.J., "" s, C.J., "" ooks: W.L., Sr D. and H ,"Separa 1	, recent adies us ss Trans Franspo brium S nith, J.C enley E tionPro	develop ing Sil sfer Op ort Proce Stage Se C., and I .J., "Se cesses"	pment. lica gel erations esses an eparation Harriot, paration ,2ndEd	s ", 3rd nd Unit ons", Pr , P., "Un n Proce n.,Tata Pr 5	Edn., M Operat entice I nit Ope ss Prino McGra rogram	AcGraw ions", 4 Hall, 19 rations ciples", w-Hill1 Outco 7	7-Hill, 1 th Editi 93. in Chen 2nd Ed 980 mes 8	981. ion, Pre nical En ., John	ntice H ngineeri Wiley, 10	7 allInc., ng", 7tl 2006. 11	Fotal: New Jer h Edition 12	rsey, 200 n, McGra Pro Sp Out 1)3. aw-Hil ecific comes 2
 membrane dis Lab Compon Adsor Fext Books: Treybal, R. Geankoplis Wankat, P. Reference Booxies McCabe, 2005. Seader J.I. King,C.J., Course Outcomes CO1 	tillation, nent rption stu .E., "Mas s, C.J., " , "Equili ooks: W.L., Sr D. and H ,"Separa 1 2	, recent adies us ss Trans Franspo brium S mith, J.C enley E tionPro	develop ing Sil sfer Op ort Proce Stage Se C., and I .J., "Se cesses" 3 1	pment. ica gel erations esses an eparation Harriot, paration ,2ndEd	s ", 3rd nd Unit ons", Pr , P., "Un n Proce n.,Tatal Pr 5 2	Edn., N Operat entice I nit Ope ss Prino McGra rogram	AcGraw ions", 4 Hall, 19 rations ciples", w-Hill1 n Outco 7 2	7-Hill, 1 th Editi 93. in Chen 2nd Ed 980 mes 8 1	981. ion, Pre nical En ., John 9 2	entice H	Image: The second se	Fotal: New Jer h Edition 12	Pro Sp Out 1 2)3. aw-Hil ecific comes 1
membrane dis Lab Compon • Adsor Fext Books: 1. Treybal, R. 2. Geankoplis 3. Wankat, P. Reference Boo 1. McCabe, 2005. 2. Seader J.I. 3. King,C.J., Course Outcomes CO1 CO2	tillation, nent rption stu E., "Mas s, C.J., "" s, C.J., "" ooks: W.L., Sr D. and H ,"Separa 1 2 1	, recent adies us ss Trans Franspo brium S mith, J.C enley E tionPro	develop ing Sil sfer Optort Proce Stage Se C., and I .J., "Se cesses" 3 1 3	pment. ica gel erations esses an eparation ,2ndEd 4 1 2	s ", 3rd nd Unit ons", Pr , P., "Un n Proce n.,Tata Pr 5 2 1	Edn., M Operat entice I nit Ope ss Prino McGra ⁻¹ cogram 6 1 2	AcGraw ions", 4 Hall, 19 rations ciples", w-Hill1 Outco 7 2 1	-Hill, 1 eth Editi 93. in Chen 2nd Ed 980 mes 8 1 2	981. ion, Pre nical En ., John 9 2 1	entice H ngineeri Wiley, 10 3 2	1 allInc., ng", 7th 2006. 11 2 1	Fotal: New Jer h Edition 1 1 1	Pro Sp Out 1 2 2)3. aw-Hil ecific comes 2 1 1
Text Books: 1. Treybal, R. 2. Geankoplis 3. Wankat, P. Reference Bo 1. McCabe, 2005. 2. Seader J.I 3. King,C.J., Course Outcomes CO1 CO2 CO3	tillation, nent rption stu .E., "Ma: s, C.J., " , "Equili ooks: W.L., Sr D. and H ,"Separa 1 2 1 2	, recent adies us ss Trans Franspo brium S nith, J.C enley E tionPro	develop ing Sil sfer Op ort Proce Stage Se C., and I .J., "Se cesses" 3 1 3 1 3	pment. ica gel erations esses an eparation ,2ndEd 4 1 2 2	s ", 3rd nd Unit ons", Pr , P., "Un n Proce n.,Tatal Pr 5 2 1 1	Edn., N Operat entice I nit Ope ss Prino McGra cogram 6 1 2 2	AcGraw ions", 4 Hall, 19 rations ciples", w-Hill1 Outco 7 2 1 1	7-Hill, 1 4th Editi 93. in Chen 2nd Ed 980 mes 8 1 2 1	981. ion, Pre nical En ., John 9 2 1 1	entice H ngineeri Wiley, 10 3 2 2	Image: Transmission of the second	Fotal: New Jer h Edition 1 2	Pro Sp. Out 1 2 2 1)3. aw-Hil ecific comes 2 1 1 1
Text Books: 1. Treybal, R. 2. Geankoplis 3. Wankat, P. Reference Bo 1. McCabe, 2005. 2. Seader J.I. 3. King,C.J., Course Outcomes CO1 CO2	tillation, nent rption stu E., "Mas s, C.J., "" s, C.J., "" ooks: W.L., Sr D. and H ,"Separa 1 2 1	, recent adies us ss Trans Franspo brium S mith, J.C enley E tionPro	develop ing Sil sfer Optort Proce Stage Se C., and I .J., "Se cesses" 3 1 3	pment. ica gel erations esses an eparation ,2ndEd 4 1 2	s ", 3rd nd Unit ons", Pr , P., "Un n Proce n.,Tata Pr 5 2 1	Edn., M Operat entice I nit Ope ss Prino McGra ⁻¹ cogram 6 1 2	AcGraw ions", 4 Hall, 19 rations ciples", w-Hill1 Outco 7 2 1	-Hill, 1 eth Editi 93. in Chen 2nd Ed 980 mes 8 1 2	981. ion, Pre nical En ., John 9 2 1	entice H ngineeri Wiley, 10 3 2	1 allInc., ng", 7th 2006. 11 2 1	Fotal: New Jer h Edition 1 1 1	Pro Sp Out 1 2 2)3. aw-Hil ecific comes 2 1 1

CH1603	Chemical Engineering Thermodynamics	L	Т	Р	С
		3	0	0	3
Objectives					I
The course is	aimed to				
	rstand the phase Behavior of fluids under different PVT conditions and apply them	-			
	oses. The course will render a comprehensive understanding of theory and application	n of s	soluti	on	
	nodynamics.				
Course Outc					
CO1	To understand the systematic development of new class of properties to describe n	eal m	ixtur	es	
CO2	To develop the idea of chemical potential to derive the idea of phase equilibria				
CO3	To understand the concept of equilibrium between combination of two co exist	ing p	hases	othe	r tha
	liquid and vapour				
CO4	To understand the principle of chemical reaction thermodynamics for the prec	lictio	n of	equili	briun
	conversion.				
CO5	To analyze the ideal and actual vapor-compression refrigeration cycle and Evaluation	te the	e perf	forma	nce o
	innovative vapor compression refrigeration systems				
UNIT – I	SOLUTION THERMODYNAMICS				9
Fhermodynai	nic formulation, Partial molar properties, ideal and non-ideal solutions, standard sta	ates d	efinit	ion a	nd
choice, Gibbs	-Duhem equation, excess properties of mixtures, pure species and liquids.				
UNIT – II	PHASE EQUILIBRIA				9
Phase equilib	rium in ideal solution, excess Gibbs free energy models, Henry's law, fugacity, Pha	se dia	gram	ns for	
-	s systems and for systems with a miscibility gap, effect of temperature and pressure		-		
•	liquid-liquid equilibrium, ternary liquid-liquid equilibrium.				
UNIT – III	CORRELATION AND PREDICTION OF PHASE EQUILIBRIA				9
Vapor-Liquid	Equilibrium at low, moderate and high pressures; bubble and dew point calculation	n, the	mod	ynami	ic
	est of VLE data			-	
UNIT – IV	CHEMICAL REACTION EQUILIBRIA				9
Chemical Rea	action Equilibrium of single and multiple reactions, Standard Gibbs free change, eq	uilibr	ium c	onsta	nt-
	perature; homogeneous gas and liquid phase reactions.				
-	REFRIGERATION				9
	refrigeration, methods of producing refrigeration, liquefaction process, coefficient of	of per	forma	ance.	
-	d performance of vapor compression and gas refrigeration cycles.	- p •			
u	To	tal•	45 I	PERI	
Fext Books:		ai.	43 1		005
	, Van Ness, H.C., &Abbot M.C," Introduction to Chemical Engineering thermodyn	amic	," M	oGrav	v Hill
VII Edition		annes	, 1 VI	COTav	V 1111
	"Chemical and Process Thermodynamics", Pearson International Third Edition 19	00			
	<i>C.,</i> " Chemical Engineering Thermodynamics" Universities Press,2005	99.			
	., Chemica Englicering Thermodynamics Universities (1658,2005				
3. Rao Y.V.C	aaks				
3. Rao Y.V.C Reference Be					
3. Rao Y.V.C Reference B 1. Sandler, 5	ooks: S.I.,"Chemical and Engineering Thermodynamics", II Edition,Wiley,1989. n K.V"A Text Book of Chemical Engineering Thermodynamics "Prentice Hall of I	ndia	Dr.4 T	+d 200	0.1

Course Outcomes		Program Outcomes														m ic nes	
	1	2	3	4	5	6	7	8	9	10	11	12		1		2	
CO1	2	1	1	1	2	1	2	1	2	3	2	1		2		1	
CO2	1	2	3	2	1	2	1	2	1	2	1	1		2		1	
CO3	2	2	1	2	1	2	1	1	1	2	1	2		1 1			
CO4	1	1	1	2	1	2	1	1	2	2	1	2		1		1	
CO5	1	2	1	2	3	1	2	1	1	2	1	1		2		1	
CH1604		Process Dynamics and Control L T P												C			
Objectives												3	()	0	3	
and o	mine pos mic behav pen loop	ssible c vior of system	a proce														
Course Outc		-															
CO1	To und				•		natical	descrip	tion of	a chem	ical pro	ocess a	s a p	rere	quisi	te t	
GO2	process	•						<u> </u>		• • • •	1						
CO2	To deve	-					-		-					equ	iatioi	ns t	
CO3	incorpo To conv	•				-				U	•	ransio	ms				
CO3	To unde						-				-	lora					
C04 C05	To appr		-		•								rola	rote	ning	0110	
005	as Casc		-		-				Uners U	y using	auvane	cu com	101 5	ac	gies	suc	
UNIT – I	INTRO			vara, D			oensuite	/11.								9	
Introduction t				ontrol.	Mathem	natical d	descript	ion of a	chemic	al proce	esses. Fo	ormula	ting l	Proc	cess	-	
Models, Lapl							-			•			•			dar	
input forcing			-		•						•						
relationship b			-	-						· 1	1						
UNIT – II	FIRST				HER (ORDE	R SYST	EMS								Ģ	
Open-loop sy	stems, fir	st orde	r syste	ms and	their tr	ansient	respon	se for s	tandard	l input f	unction	ns, first	orde	r sy	stem	s in	
I I 2	zation an	d its ap	plicatio	on in pr	ocess c	ontrol,	second	order s	ystems	and the	eir dyna	mics; t	ransp	orta	ation	lag	
series, lineari	el. Skoge	staad's	rule fo	or FOPI	OT and	SOPD	Г, Lead	- Lag s	ystems								
	, 0	-)NTR(DL SYS	STEM										9	
series, lineari	CLOSI	ED LO								nol arrat	eme ce	rvo and	1 100	ılate	ory		
series, lineari FOPDT Mod	CLOSI				of block	k diagra	am for f	feed-ba	ck cont	roi syst	cillis, sc	i vo un	rieg				
series, lineari FOPDT Mod UNIT – III Closed loop c problems, tra	CLOSI control sy nsfer fund	stems, ction fo	develo or contr	pment o ollers a	nd fina	l contro	ol eleme	ent, prii	nciples	of pneu	matic a	and elec	troni	c			
series, lineari FOPDT Mod UNIT – III Closed loop c	CLOSI control sy nsfer fund ontrol val	stems, ction fo lves, tra	develop or contr unsient	pment o ollers a respons	nd fina se of clo	l contro	ol eleme	ent, prii	nciples	of pneu	matic a	and elec	troni	c	agrar	n.	
series, lineari FOPDT Mod UNIT – III Closed loop c problems, tra controllers, co UNIT – IV	CLOSE control sy nsfer func ontrol val	stems, ction fo ves, tra UENC	develop or contr unsient Y RES	pment o ollers a respons PONSI	nd fina se of clo E	l contro osed-lo	ol eleme op cont	ent, prin rol syst	nciples tems an	of pneu d their	matic a stability	und eleo y, Root	troni locu	.c s dia		9	
series, lineari FOPDT Mode UNIT – III Closed loop c problems, trai controllers, co UNIT – IV Introduction t	CLOSI control sy nsfer func ontrol val FREQU to frequer	stems, ction fo lves, tra UENC ^Y ncy resj	develop or contr insient Y RES ponse c	pment of ollers a response PONSI of close	nd fina se of clo E d-loop	l contro osed-lo systems	ol eleme op cont	ent, prin rol syst ol syste	ems an em desi	of pneu d their gn by fr	matic a stability equenc	und eleo y, Root	troni locu	.c s dia		9	
Series, lineari FOPDT Mode UNIT – III Closed loop c problems, trans- controllers, co UNIT – IV Introduction t	CLOSI control sy nsfer fund ontrol val FREQU to frequer n, stability	stems, ction fo lves, tra UENC ncy resp y criter	develop or contr unsient Y RES ponse c ion, tur	pment of ollers a respons PONSI of closed ning of o	nd fina se of clo E d-loop a control	l contro osed-lo systems ler setti	ol eleme op cont	ent, prin rol syst ol syste	ems an em desi	of pneu d their gn by fr	matic a stability equenc	und eleo y, Root	troni locu	.c s dia		9	
series, lineari FOPDT Mod UNIT – III Closed loop c problems, tra controllers, co UNIT – IV	CLOSI control sy nsfer func ontrol val FREQU to frequer	stems, ction fo lves, tra UENC ncy resp y criter	develop or contr unsient Y RES ponse c ion, tur	pment of ollers a respons PONSI of closed ning of o	nd fina se of clo E d-loop a control	l contro osed-lo systems ler setti	ol eleme op cont	ent, prin rol syst ol syste	ems an em desi	of pneu d their gn by fr	matic a stability equenc	und eleo y, Root	troni locu	.c s dia		9	

Text Books:

- 1. Stephanopoulos, G. (1984). Chemical process control (Vol. 2). New Jersey: Prentice hall.
- 2. Ogunnaike, B. A., & Ray, W. H. (1994). Process dynamics, modeling, and control (Vol. 1). New York: Oxford University Press.
- 3. Coughanowr, D. R., & Leblanc, S. E. (2008). Introductory concepts. Process Systems Analysis and Control, 3rd Ed, 1-6.

Reference Books:

- 1. Seborg, D. E., Mellichamp, D. A., Edgar, T. F., & Doyle III, F. J. (2010). Process dynamics and control. John Wiley & Sons.
- 2. Bequette, B. W. (2003). Process control: modeling, design, and simulation. Prentice Hall Professional.
- 3. Riggs, J. B., & Karim, M. N. (2006). Chemical and Bio-process Control: James B. Riggs, M. Nazmul Karim. Prentice Hall.
- Luyben, W. L., Tyréus, B. D., &Luyben, M. L. (1998). Plantwide process control (Vol. 43). New York: McGraw-Hill

Course Outcomes					Pı	rogram	o Outco	omes					Sp	gram ecific comes
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	1	1	1	2	1	2	1	2	3	2	1	2	1
CO2	1	2	3	2	1	2	1	2	1	2	1	1	2	1
CO3	2	2	1	2	1	2	1	1	1	2	1	2	1	1
CO4	1	1	1	2	1	2	1	1	2	2	1	2	1	1
CO5	1	2	1	2	3	1	2	1	1	2	1	1	2	1

CH1605	Process Economics and Industrial Management	L	Т	Р	С
		3	0	0	3
Objectives					
The course is	aimed to				
	rstand the various concepts of economics, process development, design consideratio emical industry	n and	l cost	estim	ation
Course Outc	omes (CO)				
C313.1	To understand the concept of economics in a process plant, time value of money ar	nd cos	st ind	ices	
C313.2	Able to integrate knowledge about financial statements, Depreciation and Account	ing			
C313.3	Able develop economic balance for chemical engineering equipment's and determi	ne th	e opt	imum	cost
	for operation				
C313.4	To understand the basics of principles of management, types of organization and M	IIS			
C313.5	To understand the theory behind Work measurement technique, Production plannir	ng and	d eler	nents	of
	production control				
UNIT – I	INTEREST AND PLANT COST				9
Economics-E	ngineering economics-Financial efficiency, human factors, capital, accounting. Time	e valu	e of	money	/ —
Interest, prese	ent worth, annuities, Depreciation-methods, capital investment, estimation of capital	cost,	elem	ents of	f
cost, break ev	en analysis (BEA)				
UNIT – II	PROFITABILITY AND FINANCIAL RATIOS				9
Profitability -	methods to estimate profitability, Alternative investments, Balance sheet-Preparatio	n, Inc	come	staten	nent
(Profit and los	ss account) and financial ratio analysis.				

UNIT – II	I ECON	JOMIC	C BALA	NCE J	N EQU	JIPME:	NTS							9
Essentials of					-			ions, cy	velic op	eration	s, econ	omic ba	lance for	
insulation,							-	•	· •		,			
UNIT – IV		CIPLE	S OF M	IANA(<u>GEMÊ</u>	NT								9
Principles of							ng, proc	ess of a	directin	g-comr	nunica	tion and	types of	
communica	U	· .	U				0.1			0			2 I	
UNIT – V		-	ON PLA				-					-	×	9
Work meas								ocedure	e and ar	plication	on, tin	ne study	procedur	
performanc		-			•	-			•	•		•	-	
routing, sch		• •	•		•	•			•				<u> </u>	
		<u> </u>								1 -		Total:	45 PEF	RIODS
Text Book	s:											I		
1. Peters an	nd Timmer	haus, P	'lant des	ign and	1 Econo	mics fo	or Chem	ical En	gineers	, McGr	aw Hil	l 5th Edi	tion, 200	
2. Ahuja K				•					•	·			-	
3. Schweye			0		-									
Reference	Books:													
1. F.C. Jel	en and J.H	Black	. "Cost :	and Op	timizati	ion Eng	ineering	z", Mc(Graw H	ill, 3rd	Edn., 1	992		
				<u> </u>				,,		- ,				
I													Pro	ogram
Course					Р	rogram	1 Outco	mes						ecific
Outcome	.c					8 -0							-	tcomes
0 4000	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	1	1	1	2	1	2	1	2	3	2	1	2	1
CO2	1	2	3	2	1	2	1	2	1	2	1	1	2	1
CO3	2	2	1	2	1	2	1	1	1	2	1	2	1	1
CO4	1	1	1	2	1	2	1	1	2	2	1	2	1	1
CO5	1	2	1	2	3	1	2	1	1	2	1	1	2	1
		<u> </u>			<u> </u>									
CH1607			-	Profes	sional H	Ethical	Practic	e				L	T P	С
												0	3 3	1
Objectives														
🗸 Th	e course sh	iould co	over the	follow	ing topi	cs by w	ay of S	eminar	s, Expe	rt Lectu	irers ar	nd Assig	nments.	
Course Ou	itcomes (C	20)												
CO1	Distingui							•						
CO2	Practice r	noral ju	ldgment	in con	ditions	of dilen	nma.							
CO3	Relate the	e code c	of ethics	to soci	ial expe	rimenta	ition							
CO4	Develop	concept	s based	on mor	ral issue	es and e	nquiry]
CO5	Resolve r	noral re	sponsib	ilities i	n comp	lication	IS.							
1. Engineer	ring Ethics	– Mora	al Issues	s, Ethic	al theor	ies and	their us	es						
2. Engineer	ring as Exp	perimen	tation –	Code	of Ethic	S								
3. Engineer	r's Respon	sibilty f	or Safet	ty										
4. Respons	ibilities in	Rights		-										

Course Outcomes					Pr	ogram	Outco	omes					Spe	gram ecific comes
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1	2	1	2	2	1	2	1	2	3	2	1	2	1
CO2	1	1	2	2	1	2	1	2	1	2	1	1	2	1
CO3	1	3	2	2	1	2	1	1	1	2	1	2	1	1
CO4	2	2	1	2	1	2	1	1	2	2	1	2	1	1
CO5	3	1	2	1	3	1	2	1	1	2	1	1	2	1

CH1608	Chemical Reaction Engineering Laboratory	L	Т	Р	C
		0	0	3	2
Objectives					
	is aimed to				
	evelop sound practical knowledge for students on different types of reactors.				
	atcomes (CO)				
CO1	Determine the rate constant experimentally in a batch reactor.				
CO2	Determine the conversion of a reaction in different reactors (batch, CSTR, PFR)				
CO3	Study of temperature dependence of rate constant.				
CO4	Determine the non-ideal behaviour and residence time distribution in PFR and C	STR.			
CO5	Determine the conversion of reactor arranged in series.				
LIST OF	EXPERIMENTS				
	studies in a Batch reactor				
2. Kinetic	studies in a Plug flow reactor				
	studies in a CSTR				
4. Kinetic	studies in a Packed bed reactor				
5. Kinetic	studies in a PFR followed by a CSTR				
	idies in a PFR				
	idies in a Packed bed reactor				
	idies in a CSTR				
	on micellar catalysis				
	of temperature dependence of rate constant using CSTR.				
	studies in Sono chemical reactor				
	s on Cascade CSTR				
	es of photochemical reaction				
	stration of heterogeneous catalytic reaction stration of gas-liquid reaction				
	s study in Adiabatic reactor				
	ination of Activation Energy of a reaction				
	study in semi batch reactor				
	•				
	EQUIPMENT FOR A BATCH OF 30 STUDENTS				
1. Batch re					
2. Plug flo					
	ous Stirred Tank Reactor				
	emical reactor				

- 5. Photo chemical reactor
- 6. Packed bed reactor

Total Periods:

60 PERIODS

Course Outcomes					Pr	ogram	Outco	omes					Spe	gram ecific comes
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1	2	1	2	2	1	2	1	2	3	2	1	2	1
CO2	1	1	2	2	1	2	1	2	1	2	1	1	2	1
CO3	1	3	2	2	1	2	1	1	1	2	1	2	1	1
CO4	2	2	1	2	1	2	1	1	2	2	1	2	1	1
CO5	3	1	2	1	3	1	2	1	1	2	1	1	2	1

SEMESTER VII

CH1701	Transport Phenomena	L	Т	Р	С
		3	0	0	3
Objectives					
	ribe mass, momentum and energy transport at molecular, microscopic and macroscopic; ity, temperature and concentration profiles	pic le	vel to	deter	mine
Course Outo	nomes (CO)				
CO1	To enable the students to understand different types of fluids, rheological model theories of transport properties of gases and liquids.				
CO2	To enable the students to acquire knowledge in the field General method of shell transfer problems; Choosing the shape of the shell; most common boundary condit and velocity distribution for flow of Newtonian and non-Newtonian fluids				
CO3	To enable the students to acquire knowledge in the field of equations of change and	d thei	r app	licatio	ons
CO4	To enable the students to acquire knowledge in the field General method of shell Mass transfer problems	bala	nce a	pproa	ch to
CO5	To enable the students to acquire knowledge in the field turbulents phenomena; ph relations for transfer fluxes; time smoothed equations of change and their application flow				
UNIT - I	MOMENTUM TRANSPORT				9
	nperature and pressure effect on viscosity of gases and liquids, Newton's law, mech Il momentum balance method, Shear stress and velocity distributions in falling film, o				
UNIT - II	ENERGY TRANSPORT				9
mechanism o	ductivity, temperature and pressure effect on thermal conductivity of gases and li of energy transport, shell energy balance method, Energy flux and temperature distribution with electrical, nuclear, viscous, chemical heat source, heat conduction through com	ributi	on in	solid	s and
UNIT - III	MASS TRANSPORT				9
method, Mas homogeneous	emperature and pressure effect on diffusivity, Fick's law, mechanism of mass transpo s flux and concentration distribution in solids and in laminar flow: stagnant gas filr s chemical reaction systems, falling film, porous catalyst				s and
UNIT - IV	EQUATION OF CHANGE AND THEIR APPLICATIONS				9
isothermal). I (multi-compo	Equations of continuity, motion and mechanical energy (Isothermal), Energy: Equ Mass: Equations of change (multi-component), equations of continuity for each speci- onent). Solutions of momentum, heat and mass transfer problems discussed und of equation of change, dimensional analysis of equations of change.	es, eq	uatio	n of e	nergy

UNIT - V TRANSPORT IN TURBULENT FLOWS AND ANALOGIES

Comparison of laminar and turbulent flows, time-smoothed equations of change, empirical expressions. Comparison of laminar and turbulent hydrodynamics, thermal and concentration boundary layer and their thicknesses. Development and applications of analogies between momentum, heat and mass transfer.

Text Books:

- 1. Bird, R. B., Stewart, W. E. and Lighfoot, E. W., "Transport Phenomena", 2nd Edn., John Wiley, 2002
- 2. Brodkey, R. S., and Hershey, H. C., "Transport Phenomena", McGraw-Hill, 1988

Reference Books:

- Welty, J. R., Wilson, R. W., and Wicks, C. W., "Fundamentals of Momentum Heat and Mass Transfer", 3rd Edition. John Wiley, New York, 1984.
- 2. Slattery, J. S., "Advanced Transport Phenomena", Cambridge University Press, London, 1999.
- **3**. C. J. Geankopolis, "Transport Processes in Chemical Operations", 3rd Edn., Prentice Hall of India, New Delhi, 1996.

Course Outcomes					P	rogram	o Outco	mes					Sp	ogram ecific comes
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	2	1	1	2	1	1	1	1	1	2	1	1
CO2	3	3	3	3	3	3	2	1	1	1	2	3	2	2
CO3	3	3	3	3	3	3	2	1	2	1	2	3	2	3
CO4	3	3	3	3	3	3	2	1	2	1	2	3	2	3
CO5	3	3	3	3	3	3	2	1	2	1	2	3	2	3

CH1702	Chemical Process Equipment Design (Integrated Lab)	L	Т	Р	C
		3	0	2	4
Objectives					1
	ents learn to do in detail process and mechanical design and engineering drawing nicalengineering equipment.	of di	iffere	nt	
Course Out	comes (CO)				
CO1	Apply the skill in thermal design of heat transfer equipment like shell and tube, do exchangers and evaporators, and assessing thermal efficiency of the above equipment like shell and tube.				
CO2	Demonstrate the skills in basic design and drawing of different dryers, cooling tow separators.	vers a	nd cy	clone	;
CO3	Apply the concepts involved in phase separation and design of distillation, Extrac columns.	tion a	nd at	sorpti	on
CO4	Demonstrate the skills in mechanical design of process equipment, design cons vessels and its auxiliary devices design the layout of process industries	iderat	tions	of pre	essur
CO5	To study the Plant Layout, Pipe Lines and Pipe Layouts, Schematics and Pres Construction	sentat	ion I	Materi	als o
UNIT - I				9-	⊦6
Heat Exchan	gers, Condensers, Evaporators				
Lab Compo	nent				
• Drav	ving considerations of Heat Exchangers				

9

45 PERIODS

Total:

L_														9+6
Cooling Tower	, Dryer	s												
Lab Compone														
Drawin	ng consi	ideratic	ons of c	ooling	owers									
UNIT - III														9+6
Absorption col		istillati	on Colu	umn, Ez	xtractio	n Colu	mn, Ad	sorption	n colum	n				
Lab Compone														
	ng consi	ideratic	ons of L	01stillati	on Col	umn an	d Adso	rption c	column					0 (
UNIT - IV			X 7	1.0	X 7	1								9+6
Packed bed Re		Pressur	e Vesse	el, Stora	age Ves	sel								
Lab Compone		:		~~ 1 ~~~	. 1 . :	1 4 0								
	ng consi				-		-			-			1	4
	ng cons		ons of t	ooit, nu	t and so	crews, v	weided	and riv	etea jo	ints, fia	ingea j	oints, no	zzies an	a
UNIT - V	cement	5												9+6
Design of Plan	nt Lavo	ut Pin	e Lines	and P	ine I a	voute	Schema	tics an	d Prese	ntation	Mater	ials of C		
Selection of pr					ipe La	youis, i	Jenema	ties an	u i i coc	mation	Water		onstruct	ion and
Lab Compone		Julpine	110											
-	ng consi	ideratic	on of Pl	ant Lay	out, Pi	pe Line	s and P	ipe Lay	vouts					
								1 5]	Fotal:	75 PER	IODS
Text Books:														
1. M.V.Joshi a	nd V V	Maha	ian "Pı	ocess I	Jauinm	ent Dec	ion" M	[acMill	an Indi	a I td				
2. S.D.Dawand							•				ur 200	0		
Z. S.D.Dawand	<i>i</i> c, 110	CC35 D	csign 0	Lquip	mento	, centra			lication	s, magp	ui, 200	0		
Reference Boo														
1. Indian Star	ndard S	pecific	ations	IS-803,	1962;	IS-407	2, 1967	7; IS-28	325, 19	69. Ind	ian Sta	ndards Ii	nstitutio	n, New
Delhi.		–												
2. R.H. Perry			•						- ·	·		* * * 11		
3. W.L.McCa							ot Che		inginee	rıng″, №	AcGrav	v-H1ll.		
	ybai, T	1			ions". N				U	-				
4. Robert Tre							v-Hill. (56	C	ke Drin	tors I to	1		
4. Robert Tre 5. J.M. Couls							v-Hill. (56	C	ks Prin	ters Lto	l.		
							v-Hill. (56	C	ks Prin	ters Lto	1.	Duo	
5. J.M. Couls						gineerii	v-Hill. (ng", vol	56	C	ks Prin	ters Lto	l		gram
5. J.M. Couls Course						gineerii Pro	v-Hill. (ng", vol ogram	56	C	ks Prin	ters Lto	l	Spe	ecific
5. J.M. Couls	on and	J.Richa	ardson,	"Ĉhem	ical En	gineerin Pro Out	v-Hill. (ng", vol ogram comes	56 . 6, Asi	ian Boo				Spe Out	ecific comes
5. J.M. Couls Course Outcomes	on and .	J.Richa	ardson,	"Ĉhem	ical En	gineerii Pro Out 6	v-Hill. (ng", vol ogram comes 7	56 I. 6, Asi	ian Boo	10	11	12	Spe Out 1	ecific comes 2
5. J.M. Couls Course Outcomes	on and	J.Richa	ardson, 3 1	"Ĉhem 4 2	ical En	Pro Out	v-Hill. (ng", vol ogram comes	56 . 6, Asi 8 1	ian Boo	10 3			Spo Out 1 2	ecific comes
5. J.M. Couls Course Outcomes	on and .	J.Richa	ardson,	"Ĉhem	ical En	gineerii Pro Out 6	v-Hill. (ng", vol ogram comes 7	56 I. 6, Asi 8	ian Boo	10	11	12	Spe Out 1	ecific comes 2
5. J.M. Couls Course Outcomes	1	J.Richa 2 2	ardson, 3 1	"Ĉhem 4 2	ical Én 5 2	Pro Out 6	ogram comes 7 2	56 . 6, Asi 8 1	9 2	10 3	11 2	12 1	Spo Out 1 2	ecific comes 2 1
5. J.M. Couls Course Outcomes CO1 CO2	1 1	J .Richa 2 1	ardson, 3 1 2	"Ĉhem 4 2 2	5 2 1	Pro Out 6 1 2	v-Hill. (ng", vol ogram comes 7 2 1	56 . 6, Asi 8 1 2	9 2 1	10 3 2	11 2 1	12 1 1	Spe Out 1 2 2	ecific comes 2 1 1
5. J.M. Couls Course Outcomes CO1 CO2 CO3	1 1 1 1	2 2 1 3	3 1 2 2	"Ĉhem 4 2 2 2	5 2 1 1	Pro Out 6 1 2 2	ogram comes 7 2 1 1	56 . 6, Asi 8 1 2 1	9 2 1 1	10 3 2 2	11 2 1 1	12 1 1 2	Spo Out 1 2 2 1	ecific comes 2 1 1 1 1
5. J.M. Couls Course Outcomes CO1 CO2 CO3 CO4	1 1 1 2	2 2 1 3 2	3 1 2 2 1	"Ĉhem 4 2 2 2 2	5 2 1 1 1	gineerin Pro Out 6 1 2 2 2 2	v-Hill. (ng", vol ogram comes 7 2 1 1 1 1	56 6, Asi 8 1 2 1 1	9 2 1 1 2	10 3 2 2 2	11 2 1 1 1	12 1 1 2 2	Spe Oute 1 2 1 1 1	2 1 1 1 1 1 1 1 1 1
5. J.M. Couls Course Outcomes CO1 CO2 CO3 CO4	1 1 1 2	2 2 1 3 2	3 1 2 2 1	4 2 2 2 1	5 2 1 1 1 3	Pro Out 6 1 2 2 2 1	v-Hill. (ng", vol ogram comes 7 2 1 1 1 1	56 . 6, Asi 8 1 2 1 1 1 1	9 2 1 1 2	10 3 2 2 2	11 2 1 1 1	12 1 1 2 2	Spe Oute 1 2 1 1 1	Pecific comes 2 1 1 1 1 1

Objectives

To enable the students to

✓ Become a skilled person in hazopard hazarel analysis and finding out the root cause of an accident.

✓ Gain knowledge in devising safety policy and procedures to be adopted to implement total safety in a plant

Course Outcomes (CO)

CO1	To unde	rstand	the nee	d and i	mporta	nce of I	ndustri	al safet	у					
CO2	To unde	rstand	the cau	ses and	l effects	s of che	mical h	azards						
CO3	To unde	rstand	how in	dustries	s affect	the env	vironme	nt						
CO4	To fami	liarise v	with ha	zard an	alysis a	and asse	essment	proced	lures					
CO5	To unde	rstand	the con	cept of	Disaste	er mana	igemen	t						
UNIT - I	INTRO	DUCT	'ION T	'O SAF	FETY F	PROGE	RAMM	ES						9
Safety in indu environmental safety program levels of produ UNIT - II	l setup; t mme; effe uction and PLANT	oleranc ective 1 d opera SAFE	e limit realizat tion. TY	of the ion; ec	society conomic	y; psyc c and s	hologic ocial be	al attitu enefits;	ide tow effecti	vards sa ve com	fety pr munica	ogramme tion trai	es. Elen ning at	nents of various
Chemical proc temperature of materials and UNIT - III Appraisal; effor maintenance;	peration; machiner SAFET ective ste	danger ries; pla Y PER eps to in	rous an unning a FORM mpleme	nd toxic and lay IANCI ent safe	c chemi out. E ety proc	icals; h	ighly ra	adioacti lic insp	ve mat	erials; s	safe han	ndling an	nd opera	ation of 9 onstant
equipments; p	ACCID	rotectiv ENTS ccident	ve equij	pments - identi	fication	of acci	ident sp	ots; ren	nedial r	neasure	s; ident	ification	and ana	9 lysis of
						preven	1001 - a	acciucii	i prone	11055 -	vocatio	nui guiu	unce, iu	un noo
analysis. Fire UNIT - V Health hazard parliamentary Government, s	prevention HEALT s – occup legislation	on and f F H HA Dational ons – f	fire prot ZARD I – indu factorie	tection. S ANE Istrial h s act -	D LEGA nealth h - labour	AL ASI azards r welfa	PECTS – health re act -	n standa – ESI A	urds, an Act – V	d rules Vorkme	– safe v en Com	working	environi	9 ments –
UNIT - V Health hazard parliamentary Government, s	prevention HEALT s – occup legislation	on and f F H HA Dational ons – f	fire prot ZARD I – indu factorie	tection. S ANE Istrial h s act -	D LEGA nealth h - labour	AL ASI azards r welfa	PECTS – health re act -	n standa – ESI A	urds, an Act – V	d rules Vorkme	– safe v en Com 1 safety	working	environi	9 ments – Role of
UNIT - V Health hazard parliamentary	ety at Wo andley, In H. and W	n and f TH HA pational ons – f ganizati rk, VII ndustria ood, W n Peter	Fire prof ZARD I – indu factorie ions, ma Edition Il Safet V.S.Safe	tection. S ANE Istrial has act - anagen n, Butte y Hand ety and E. and b	D LEGA nealth h - labour nent and erworth Book I Accide	AL ASI azards r welfa d trade Heinm McGrav nt Prev	PECTS – health re act - unions an 200 w-Hill H ention i ndustria	n standa – ESI 4 in prom 7. 300k Co in Chen	urds, an Act – V noting in ompany nical Op	d rules Vorkme ndustria v 2nd Ec peration	– safe v en Com 1 safety 1 dition, 1	working pensatio 7. Fotal: 1977. cience, 1	environi n Act .] 45 PEF 1965	9 ments – Role of RIODS
UNIT - V Health hazard parliamentary Government, s Text Books: 1. Ridley Safe 2. William Ha 3. Fawatt, H.H Reference Bo 1. Heinrich,	ety at Wo andley, In H. and W	n and f TH HA pational ons – f ganizati rk, VII ndustria ood, W n Peter	Fire prof ZARD I – indu factorie ions, ma Edition Il Safet V.S.Safe	tection. S ANE Istrial has act - anagen n, Butte y Hand ety and E. and b	D LEGA nealth h - labour nent and erworth Book I Accide Nester I Hall Inc	AL ASI azards r welfa d trade Heinm McGraw nt Prev Rood. In c., New	PECTS – health re act - unions an 200 w-Hill H ention i ndustria	n standa – ESI A in prom 7. Book Co in Chen al Accid	urds, an Act – V noting in ompany nical Op	d rules Vorkme ndustria v 2nd Ec peration	– safe v en Com 1 safety 1 dition, 1	working pensatio 7. Fotal: 1977. cience, 1	environi on Act .] 45 PEH 1965 Book Co Pro Spo	9 ments – Role of RIODS
UNIT - V Health hazard parliamentary Government, s Text Books: 1. Ridley Safe 2. William Ha 3. Fawatt, H.H Reference Bo 1. Heinrich, 2. Blake, R.I Course Outcomes	ety at Wo andley, In H. and W	n and f TH HA pational ons – f ganizati rk, VII ndustria ood, W n Peter rial Saf	Fire prof ZARD I – indu factorie ions, ma Edition Il Safet V.S.Safe	tection. S ANE Istrial has act - anagen n, Butte y Hand ety and E. and b	D LEGA health h - labour hent and erworth Book h Accide Nester I Hall Inc Pr	AL ASI azards r welfa d trade Heinm McGraw nt Prev Rood. In c., New	PECTS – health re act - unions aan 200° w-Hill H ention i ndustria Jersy – nOutco 7	n standa – ESI A in prom 7. Book Co in Chen al Accid	urds, an Act – V noting in company nical O lent Pre n. 1963	d rules Vorkmendustria v 2nd Ecoperation vention 3.	- safe v en Com l safety lition, 1 a, Inters , McGr	working pensatio 7. Fotal: 1977. cience, 1	environi on Act .] 45 PEH 1965 Book Co Book Co Spo Out 1	9 ments – Role of RIODS
UNIT - V Health hazard parliamentary Government, s Text Books: 1. Ridley Safe 2. William Ha 3. Fawatt, H.H Reference Bo 1. Heinrich, 2. Blake, R.I Course Outcomes CO1	ety at Wo andley, In H. and W boks:	n and f TH HA pational ons – f ganizati rk, VII ndustria ood, W n Peter rial Saf	Tire prov ZARD I – indu factorie ions, ma Edition Il Safety Y.S.Safe son, P.J fety, Pro-	tection. S ANE Istrial has act - anagen n, Butte y Hand ety and E. and last entice las	D LEGA nealth h - labour nent and erworth Book I Accide Nester I Hall Inc	AL ASI azards r welfa d trade Heinm McGrav mt Prev Rood. In c., New rogram	PECTS – health re act - unions an 200' w-Hill H ention i ndustria Jersy –	n standa – ESI 4 in prom 7. 3ook Co in Chen al Accid - 3rd Ed omes 8 1	urds, an Act – V ooting in ompany nical Oj lent Pre n. 1963	d rules Vorkmendustria v 2nd Ecoperation vention 3.	- safe v on Com 1 safety 1 dition, 1 d, Inters , McGr	working pensatio 7. Fotal: 1977. cience, 1 raw-Hill	environi on Act .] 45 PEH 1965 Book Co Book Co Spo Out 1 2	9 ments – Role of RIODS
UNIT - V Health hazard parliamentary Government, s Text Books: 1. Ridley Safe 2. William Ha 3. Fawatt, H.H Reference Bo 1. Heinrich, 2. Blake, R.I Course Outcomes	Prevention HEALT Is – occup legislation safety org ety at Wo andley, In H. and W Doks: H.W. Da P., Indust	n and f TH HA pational ons – f ganizati rk, VII ndustria ood, W n Peter rial Saf	The profile ZARD ZARD I – indu factorie ions, m Edition Il Safety X.S.Safety son, P.I fety, Pr 3 1 2	tection. S ANE Istrial h is act – anagen n, Butte y Hand ety and E. and l entice l	D LEGA health h - labour hent and erworth Book h Accide Nester I Hall Inc Pr	AL ASI azards r welfa d trade Heinm McGrav nt Prev Rood. In c., New	PECTS – health re act - unions aan 200° w-Hill H ention i ndustria Jersy – nOutco 7	n standa – ESI 4 in prom 7. 300k Co in Chen al Accid 3rd Ed omes 8	urds, an Act – V noting in company nical O lent Pre n. 1963	d rules Vorkmendustria v 2nd Ecoperation vention 3.	- safe v en Com l safety lition, 1 a, Inters , McGr	working pensatio 7. Fotal: 1977. cience, 1 raw-Hill	environi on Act .] 45 PEH 1965 Book Co Book Co Spo Out 1	9 ments – Role of RIODS
UNIT - V Health hazard parliamentary Government, s Text Books: 1. Ridley Safe 2. William Ha 3. Fawatt, H.H Reference Bo 1. Heinrich, 2. Blake, R.I Course Outcomes CO1 CO2 CO3	Prevention HEALT is – occup legislation safety org ety at Wo andley, In H. and W Doks: H.W. Da P., Indust	n and f TH HA pational ons – f ganizati rk, VII ndustria ood, W n Peter rial Saf 2	Tire prov ZARD I – indu factorie ions, ma Edition Il Safety Y.S.Safe son, P.J fety, Pro-	tection. S ANE Istrial has act - anagen n, Butto y Hand entice has entice has 4 2	D LEGA nealth h - labour nent and erworth Book I Accide Nester I Hall Inc Pr 5 2	AL ASI azards r welfa d trade Heinm McGrav mt Prev Rood. In c., New rogram	PECTS – health re act - unions : an 200' w-Hill H ention i ndustria Jersy – Outco 7 2	n standa – ESI 4 in prom 7. 3ook Co in Chen al Accid - 3rd Ed omes 8 1	urds, an Act – V noting in ompany nical Op lent Pre n. 1963	d rules Vorkmendustria	- safe v on Com l safety lition, 1 dition, 1 h, Inters , McGr	working pensatio 7. Fotal: 1977. cience, 1 aw-Hill	environi on Act .] 45 PEH 1965 Book Co Book Co Spo Out 1 2	9 ments – Role of RIODS
UNIT - V Health hazard parliamentary Government, s Text Books: 1. Ridley Safe 2. William Ha 3. Fawatt, H.H Reference Bo 1. Heinrich, 2. Blake, R.I Course Outcomes CO1 CO2	Prevention HEALT Is – occup legislation safety org ety at Wo andley, In H. and W Doks: H.W. Da P., Indust	n and f FH HA pational ons – f ganizati rk, VII ndustria ood, W n Peter rial Saf 2 2 1	The provide of the p	tection. S ANE Istrial h is act - anagen n, Butte y Hand ety and E. and l entice l 4 2 2	D LEGA health h - labour nent and erworth Book I Accide Nester I Hall Inc Pr 5 2 1	AL ASI azards r welfa d trade Heinm McGraw ant Prev Rood. In c., New rogram	PECTS – health re act - unions : aan 200' w-Hill H ention i ndustria Jersy – Outco 7 2 1	n standa – ESI A in prom 7. 3ook Co in Chen al Accid - 3rd Ed omes 8 1 2	ards, an Act – V hoting in ompany nical O lent Pre n. 1963 9 2 1	d rules Vorkmendustria	- safe v en Com l safety lition, 1 a, Inters , McGr 11 2 1	working pensatio 7. Fotal: 1 1977. cience, 1 raw-Hill 1 raw-Hill 1 1	environi on Act .] 45 PEF 1965 Book Co Book Co Spo Out 1 2 2	9 ments – Role of RIODS 0., 1980 0., 1980 gram ecific comes 2 1 1

CH1707					Ν	Mini Pı	roject						L	Т	Р	С
													0	0	3	2
Objective																
	ne objec gree cou		the min	ni proje	ect is to	make	use of t	the kno	wledge	e gaineo	l by the	stude	nt at e	early s	stages	of the
Course O	0															
CO1		· ·		d tech	nical kn	owleds	ge of th	eir sele	cted pr	oject to	opic.					
CO2							lation a			5	1					
CO3		-					k proble			system	is appro	oach.				
CO4	Condu	ict an e	enginee	ring pr	oject.											
CO5	Demo	nstrate	the kn	owledg	ge, skill	s and a	ıttitudes	s of a pi	ofessio	onal en	gineer.					
Each stude		-		_				-			-	ent. Th	e repo	ort sho	ould be	based
on the info										•	•			_		
Students, i				-		·							• •	•		
the departi	ment, in	indust	ries/Re	search	labs fo	r which	n propo	rtional	weight							
										10	tal Per	10 d S:		60 PI	ERIOI	08
															Prog	ram
Cou	rse					Pr	ogram	Outco	mes						Spe	
Outco	mes						_								Outc	om
	-														es	
		1	2	3	4	5	6	7	8	9	10	11	12		1	2
CC		1	2	1	2	2	1	2	1	2	3	2	1		2	1
		1	3	22	22	1	2	1	$\frac{2}{1}$	1	$\frac{2}{2}$	1	1		2 1	<u> </u>
CC		2	2	1	2	1	2	1	1	2	2	1	2		1	1
CC)5	3	1	2	1	3	1	2	1	1	2	1	1	-	2	1
	1															
•	1	PRO	CESS	CON	FROL	AND E	DYNAN	AICS I	ABOI	RATO	RY		L	T	Р	C
CH1708													0	0	3	2
CH1708																
CH1708 Objective																
CH1708 Objectives	e is aime	ed to	n train	ing abo	out the o	control	system	15								
CH1708 Objective The course ✓ Ga	e is aime ain the h	ed to ands-c		ing abo	out the o	control	system	IS								
CH1708 Objectives	e is aime ain the h utcomes	ed to ands-o s (CO)					system order a		ond ord	ler syst	em for	variou	ıs inpı	ıt		
CH1708 Objectives The course ✓ Ga Course O	e is aime ain the h utcomes Able t	ed to ands-o s (CO) to deter	rmine tl	he resp	onse of	f a first		and seco		•			•		t	
CH1708 Objectives The course ✓ Ga Course O CO1	e is aime ain the h utcome s Able t Able t	ed to aands-o s (CO) o deter o deter	mine t	he resp he resp	onse of	f a first f an inte	order a	and second se	on- inte	eracting	g systen		•		t	
CH1708 Objectives The course ✓ Ga Course O CO1 CO2	e is aime ain the h utcomes Able t Able t Under	ed to ands-o s (CO) o deter o deter	rmine th rmine the diffe	he resp he resp erence	onse of onse of betwee	f a first f an inte en an op	order a	and seco g and no p and c	on- inte losed le	eracting	g systen tem		•		t	

LIST OF EXPERIMENTS

- 1. Response of first order system
- 2. Response of second order system
- 3. Response of Non-Interacting level System
- 4. Response of Interacting level System
- 5. Open loop study on a level system
- 6. Open loop study on a flow system
- 7. Open loop study on a thermal system
- 8. Closed loop study on a level system
- 9. Closed loop study on a flow system
- 10. Closed loop study on a thermal system
- 11. Tuning of a level system
- 12. Tuning of a flow system
- 13. Tuning of a thermal system
- 14. Flow co-efficient of control valves
- 13. Characteristics of different types of control valves

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

- 1. Thermometer and Thermo well setup
- 2. U tube manometer (mercury and water) setup
- 3. Non- interacting System
- 4. Interacting System
- 5. Closed loop Level system
- 6. Closed loop flow system
- 7. Closed loop thermal system
- 8. Control valve setup

Program Specific Course **Program Outcomes** Outcomes Outcomes CO1 CO2 CO3 CO4 CO5

60 PERIODS

Total Periods:

CH1709	Internship	L	Т	Р	С								
		0	0	0	1								
Objectives	3												
✓ Ex	plore career alternatives prior to graduation.												
Course Ou	utcomes (CO)												
CO1	Integrate theory and practice.												
CO2	Develop work habits and attitudes necessary for job success.												
CO3	Build a record of work experience.												
CO4	Acquire employment contacts leading directly to a full-time job following graduate	ation fr	om col	llege.									
CO5	Develop communication, interpersonal and other critical skills in the job interview process.												

Students shall undergo training in R&D institutions / Academics / Industries for a minimum period of 15 days. At the end of internship students must submit a report for internal evaluation.

Course Outcomes		Program Outcomes												Program Specific Outcomes		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2		
CO1	1	2	1	2	2	1	2	1	2	3	2	1	2	1		
CO2	1	1	2	2	1	2	1	2	1	2	1	1	2	1		
CO3	1	3	2	2	1	2	1	1	1	2	1	2	1	1		
CO4	2	2	1	2	1	2	1	1	2	2	1	2	1	1		
CO5	3	1	2	1	3	1	2	1	1	2	1	1	2	1		

CH1807	Project Work	L	Т	Р	С
		0	0	20	12
Objectives	5		1		
	ne objective of the project is to make use of the knowledge gained by the student at ages of the degree course.	various			
Course Or	utcomes (CO)				
CO1	Demonstrate a sound technical knowledge of their selected project topic.				
CO2	Undertake problem identification, formulation and solution.				
CO3	Design engineering solutions to complex problems utilizing a systems approach.				
CO4	Conduct an engineering project.				
CO5	Demonstrate the knowledge, skills and attitudes of a professional engineer.				
	ent is required to submit a report on the project assigned to him by the department. The project assigned to him by the department. The prmation available in the literature or data obtained in the laboratory/industry.	ne repor	t shou	ld be b	ased

Students, in addition to the home problem will be permitted to undertake industrial/ consultancy project work, outside the department, in industries/Research labs for which proportional weightage will be given in the final assessment.

Course Outcomes	Dutcomes										Spe	Program Specific Outcomes		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1	2	1	2	2	1	2	1	2	3	2	1	2	1
CO2	1	1	2	2	1	2	1	2	1	2	1	1	2	1
CO3	1	3	2	2	1	2	1	1	1	2	1	2	1	1
CO4	2	2	1	2	1	2	1	1	2	2	1	2	1	1
CO5	3	1	2	1	3	1	2	1	1	2	1	1	2	1

CH	1509	CHEMICAL WORKS ORGANIZATION AND MANAGEMENT	L	Т	Р	(
	-		3	0	0	
OBJE	CTIVE		-	-		<u> </u>
	rse is aim	ed to				
		Let the labour welfare act, plant location and layout				
		ice the multi-dimensional facts of organizational behaviour.				
\succ		ness of the individual dimensions, the group dimensions and its dynamics				
Course	Outcome	s (CO)				
CO1	To asses	s their own entrepreneurial and enterprising potential				
CO2	To deve	op an understanding of the general role of Small Business Enterprises				
CO3		knowledge on material and scientific management				
CO4		e difference between entrepreneurial and managerial type jobs				
CO5		anding of individual personalities and interpersonal skills needed for				
		communications				
UNIT -						
		ns - Introduction. Significance & conditions for good industrial relation				
		s & suggestions to improve it. Labour disputes in India. Industrial disput		t-194	7 (o	nl
		pes of industrial disputes - strikes - lockouts. Regulation of strikes & Lock	outs.			1
UNIT -						
		tion - Various forms of private, ownerships, comparison and choice. Indust				
		Factors influencing plant location - split and coupled locations- size of indu				ar
		equipment various types of layout - guarding of machineries - illumination	, heat	ing a	nd	
ventilat						
UNIT -						
		nent - Organization - Production Planning, purchase, store - inventory				an
		fic management - Rationalization - time and motion study analysis. Time m	anag	emen	t.	
UNIT -						(
		positions - personality and personality types, Maddi's models of perso				ua
		ment of perpectual skills. Motivation and work performance. Reinforcement	nt the	ory -	-	
		een motivation and performance.				
UNIT -		The contraction of a second		1 A		
•		nunication – The communication process, structure of communication, Trans			•	
		communication networks in an organization. Group Dynamics – Synerg group effectiveness, stages of group development. Properties and Characteristic				
	e groups	group effectiveness, stages of group development. Properties and Charact			ing	,111
circetiv	c groups	Total	Perio	der	Δ	5
Text B	ooks:	1000			- 1	
		ness Organization and Management, 2010.				
VIIK 19 IV		Drganisational Behaviour – Text and Cases" 2004, Tata McGrawHill	New	الم	ni	
		rgamsanonai Denavioui – rest and Cases 2004, rata McOldwillin			.1.	
	ce Books					
Jma sel		• nnel Management & Industrial Relations" 2013, Sultan Chand and Sor	ns Ne	w D	elhi	
Jma sel Referer	- "Person	rganization behavior - Texts and Cases, 1997Himalaya PublishingHo			ciiii.	
Jma sel Referer Fripathi			usc.			
Jma sel Referer Fripathi K.Aswa	thappa, O					
Jma sel Referer Fripathi K.Aswa ndustri	thappa, O al dispute	s act-1947				
Jma sel Referer Fripathi K.Aswa ndustri Chakrat	thappa, O al dispute orty S K-	s act-1947 Managerial Development & Appraisal –Macmillan India				
Jma sel Referer Fripathi X.Aswa ndustri Chakrat	thappa, O al dispute orty S K-	s act-1947				

Course Outcomes		Program Outcomes														5
0	1	2	3	4	5	6	7	8	9	10	11	12		1	2	
CO1	1	3	3	1	2	1	2	1	3	2	1	3		1	1	
CO2	3	3	1	3	2	1	3	2	1	3	2	1		2	1	
CO3	3	1	3	3	1	1	3	2	1	1	1	1		1	2	
CO4	1	3	3	2	2	1	2	1	3	3	1	2		1	1	
CO5	2	1	3	3	2	1	2	3	1	2	3	3		1	2	
CH1510			M	EMBR	RANE	SCIEN	ICE A	ND EN	IGINE	ERINO	G		L	Т	Р	(
													3	0	0	
	aimed	udents				• •	es of M	embra	ne com	positio	ons. To	familia	arize	the s	studer	nts

- of various Membrane Configuration Units.
 To provide knowledge about the various Membrane separations techniques.
 To illustrate the various membrane synthesis techniques and its applications

Course	Outcome	$\mathbf{x}(\mathbf{CO})$	
CO1		liarize main membrane processes, principles, separation mechanisms, and applications	
CO2	To Appr	eciate the selection criteria for different membrane processes	
CO3	To Desc	ribe the principle of the most common membrane applications	
CO4	To Gain	knowledge on different modules	
CO5	To Unde	rstand the application of membrane in various fields.	
UNIT –	I		9
Syntheti material		nes - configuration, morphology, principles of permeation and separation, membrane	
UNIT –	II		9
Processi	ng: Phase	-inversion process, anisotropic membranes, isotropic porous membranes. Polymer blends a	and
		nembranes, liquid membranes, bio mimetic membranes ion exchange membranes, electembranes, mosaic membranes.	tro
UNIT –	III		9
Separati filtration		ses: Electro dialysis, micro filtration, ultra-filtration, reverse osmosis, hemodialysis, h	em

UNIT – IV

Membrane systems: Plate and frame, spiral-wound Unit, hollow fiber Units.

UNIT – V

Membrane Applications: Wastewater treatment, bio separation, biomedical.

Total Periods:

9

9

45

Text Books:

- 1. R.B. Kesting., Synthetic Polymeric Membranes, Second Edn., 1985, Wiley-Interscience, New York.
- 2. Enrico Drioli, Lidietta Giorno, Enrica Fontananova Comprehensive Membrane Science and Engineering, 2013, Elsevier, II Edn.

Reference Books:

- 1. Mulder, J Basic Principles of Membrane Technology, 1996, Springer.
- 2. Richard W. Baker, Membrane technology and applications, II Edn., 2004 Wiley Publication.

Course Outcomes					Pr	ogram	n Outco	omes					Program Specific Outcomes 1 2 1 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	1	3	3	1	2	1	2	1	3	2	1	3	1	1	
CO2	3	3	1	3	2	1	3	2	1	3	2	1	2	1	
CO3	3	1	3	3	1	1	3	2	1	1	1	1	1	2	
CO4	1	3	3	2	2	1	2	1	3	3	1	2	1	1	
CO5	2	1	3	3	2	1	2	3	1	2	3	3	1	2	

CH1511	POLYMER TECHNOLOGY	L	Т	P	C
		3	0	0	3

OBJECTIVE

The course is aimed to

 \succ To enable the students to compute molecular weight averages from the molecular weight distribution, Condensation polymerization and transition in polymers.

Condena	constation solymenzation and transition in polymers.											
C	Course Ou	itcomes (CO)										
CO1	To unde	rstand the fundamental concepts of macromolecules										
CO2	To unde	rstand the addition polymerization										
CO3	To unde	rstand the condensation polymerization										
CO4	To analy	yse the polymer property relations and their application										
CO5												
UNIT – I INTRODUCTION 9												
UNIT-1 INTRODUCTION 9 History of Macromolecules – structure of natural products like cellulose, rubber, proteins – concepts of macromolecules – Staudinger's theory of macromolecules – difference between simple organic molecules and macromolecules. 9												
UNIT - IIADDITION POLYMERIZATION9												
Chemistry of Olefins and Dienes – double bonds – Chemistry of free radicals – monomers – functionality –												
	lymerization: Initiation – types of initiation – free radical polymerization – cationic polymerization –											
anionicp	anionicpolymerization – coordination polymerization – industrial polymerization – bulk, emulsion, suspension											
and												

solution polymerization techniques - Kinetics - Copolymerization concepts.

		ONDE					7 4 70 7 4							
UNIT – III							ZATIO							9
Simple conder														
reactivity - po														s by
polycondensat	-		<u> </u>				-		rs by c	ondens	sation -	- gel poi	nt.	
UNIT – IV							OLYN							9
Difference in r														
average molec		•	•	-	•					-		•		
-Polydispersity				t deter	minatio	on. Dif	ferent	method	ls – Ge	el Perm	eation	Chroma	tograpł	ıy —
Osmometry, L														
UNIT – V	T	RANS	ITION	IS IN I	POLY	MERS								9
First and secor	nd orde	r transi	itions -	- Glass	transit	ion, T	g – mu	ltiple tr	ansitio	ons in p	olyme	rs – expe	eriment	al study
- significance	of tran	sition t	empera	atures	– crysta	allinity	in pol	ymers -	– effec	t of cry	/stalliz	ation – i	n polyr	ners –
factors affectir	ng cryst	tallizat	ion cry	stal nu	cleatio	n and	growth	- relat	ionshij	p betwo	een Tg	and Tm	- Rela	tionship
between prope	rties ar	nd crys	talline	structu	ire.									
											T	Total Per	riods:	45
Text Books:														
1. Billmeyer.F	.W.,Jr,	Text E	Book of	f Polyn	ner Sci	ence, I	Ed. Wil	ey-Inte	erscien	ce, 198	34.			
2. Seymour. R	.B., and	d Carra	her.C.	E., Jr.,	Polym	er Che	mistry	, 2nd E	d., Ma	rcel De	ekker,	1988.		
3. Gowariker.V	/.T., V	iswana	than.N	I.V., ar	nd Sree	dar.J.,	Polym	er Scie	nce, W	viley Ea	astern l	Ltd., 198	38.	
Reference Bo	oks:													
1. Joel,R.F; Po	lvmer	Scienc	e and T	Techno	logy. H	Eastern	Econo	mv Ed	ition. 1	999.				
2. Rodriguez, l											stems,	5th editi	on, Ta	ylor an
C C								•	•	·			-	
													Pro	gram
Course					Pr	ogran	o Outco	omes						ecific
Outcomes						5							-	comes
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1	3	3	1	2	1	2	1	3	2	1	3	1	1
					1									

	1	2	3	4	5	6	7	8	9	10	11	
CO1	1	3	3	1	2	1	2	1	3	2	1	
CO2	3	3	1	3	2	1	3	2	1	3	2	
CO3	3	1	3	3	1	1	3	2	1	1	1	
CO4	1	3	3	2	2	1	2	1	3	3	1	
CO5	2	1	3	3	2	1	2	3	1	2	3	1

(H	15	12
-	_		

FUNDAMENTALS OF THERMODYNAMICS

 T
 P
 C

 0
 0
 3

L

OBJECTIVE

The course is aimed to

Learn PVT behaviour of fluids, laws of thermodynamics, thermodynamic property relations and their application to fluid flow, power generation and refrigeration processes.

Course Outcomes (CO)

	To understand the fundamental concepts of thermodynamics and its related functions
CO1	
CO2	To relate PVT behaviour of fluids and understand the real gas behavior
CO3	To apply second law and analyze the feasibility of system/devices
CO4	To analyse the thermodynamic property relations and their application to fluid flow
CO5	To formulate thermodynamic formulations and the working of compressors and expanders
	·

UNIT – I	BASIC CONCEPTS AND LAWS OF THERMODYNAMICS	9
	f thermodynamics, the variables and quantities of thermodynamics, characteristics of syste	
and processes, e temperature scal	nergy classifications, point and path functions, energy in transition work and heat. zeroth la es	aw;
UNIT – II	FIRST LAW OF THERMODYNAMICS	9
	thermodynamics, statements of first law for the flow and non-flow processes. PVT behavior matical representation of PVT behaviour; Generalized compressibility factor correlation; ations of state	our
UNIT – III	SECOND LAW OF THERMODYNAMICS	9
	ent, energy balance for closed systems, mass and energy balance for open systems, Stateme w of thermodynamics, heat engine and refrigerator, Carnot cycle and Carnot theorems	ents
UNIT – IV	APPLICATION OF THERMODYNAMICS	9
· · · · · · · · · · · · · · · · · · ·	temperature scale, entropy and its calculation, second law of thermodynamics for a control v of thermodynamics, entropy from a microscopic point of view	
UNIT – V	THERMODYNAMIC FORMULATIONS	9
thermodynamic p	potentials – internal energy, enthalpy, Helmholtz free energy, Gibbs free energy; roperty relations – Maxwell relations – partial derivatives and Jacobian method; residual odynamic property tables and diagrams	
	Total Periods: 4	15
Text Books:		
	an Ness H.C., Abbott M.M., Introduction to Chemical Engineering Thermodynamics, Seve	enth
Edition. Tata M	CGraw Hill International Student Edition, 2007	

1. Dodge, B.F., Chemical Engineering Thermodynamics, McGraw Hill International Student Edition, 1960. 2. Sandler, S.I., Chemical and Engineering Thermodynamics, Second Edition, John Wiley International Student Edition, 1989. LTPC 22 0 3 38

3. Rao .Y.V.C., Chemical Engineering Thermodynamics, United press (India) ltd.1997.

4. Narayanan K.V., A Text Book of Chemical Engineering Thermodynamics, Prentice- Hall of India Private Limited, New Delhi,2001.

5. Merle Potter, Craig Somerton., Schaum's outline of Thermodynamics for Engineers, Second Edition, McGraw Hill ,2009

6. Hendrick. C. Vanness, Michael M. Abbott., Schaum's outline of Thermodynamics with ChemicalApplications, McGraw Hill Professional, 1989.

Course Outcomes						Pro Out	gram comes					Program Specific Outcomes							
	1	2	3	4	5	6	7	8	9	10	11	12	1	2					
CO1	1	3	3	1	2	1	2	1	3	2	1	3	1	1					
CO2	3	3	1	3	2	1	3	2	1	3	2	1	2	1					
CO3	3	1	3	3	1	1	3	2	1	1	1	1	1	2					

CO4	1	3	3	2	2	1	2	1	3	3	1	2	1	1
CO5	2	1	3	3	2	1	2	3	1	2	3	3	1	2

PROFESSIONAL ELECTIVE II

CH1	509	INDUSTRIAL AIR POLLUTION	L	Т	Р	
			3	0	0	
OBJECT	IVE					
The cours	se is aim	ed to				
≻ T	'o enable	the students to learn about Air Pollution, effects of air pollution, Global ef	fects	, Sar	nplin	ıg
		nts, Meteorology and air pollution, Atmospheric stability, Plume rise and d	lispe	rsion	and	
Р	rediction	n of air quality.				
~						
Course C						
		rstand Laws and Regulation of air act				
		ify the suitable gaseous pollutants and handling technique.				
		v the particulate matter removal technique.				
		the types of equipment to remove pollutant.				
CO5	To unde	rstand the concept of adsorption techniques, various control equipment				
UNIT – I	-	INTRODUCTION				
Air Pollut	ion Regi	alatory Framework History – Air Pollution Regulatory Framework - Regulatory	orv S	vster	n-I	_a
		Clean air Act – Provisions for Recent Developments.	01 9 2	58001		
UNIT – I		AIR POLLUTION GASES				
Measuren	nent fun	damentals - chemicals and physical properties - Phase Equelbonemcon	nseco	oatio	n lav	NS
		sign and Performance – Operation and Maintenance - Absorbers – Des				
improving	g perfori	nances Absorbers.	-	-		
UNIT – I	II	PARTICULATE AIR POLLUTION				
Particle C	Collection	n mechanisms- Fluid particle Dynamics - Particle size Distribution - Effici	ency	_		
GravitySe	etling ch	ambers Cyclones- Electrostatic preceptors Bannouses				
						_
UNIT – I		HYBRID SYSTEM				
TT 1	trostatic	precipitation – Genizing Heat Scrubbers – Dry Scrubbers – Electrostatically	Aug	nente	ed Fa	ıb
Heat elect Fillration						

UNIT – V	AIR POLLUTION CONTROL EQUIPMENT		9
Introduction – I	nstallation, Equipments – Cost Model.		
		Total Periods:	45
Text Books:			
1. Air Pollution	Control Equipment Louis Theodore, Burley Intuscence 2008.		
2. Air Pollution	Control CD Cooper and FC.Alley Wairland Press III Edition 2002.		
3. Air Pollution	Control Engg, Noel de nevey – Mcgrew Hill.		
		Prog	gram
Course	Program	Spe	cific
	Outcomes	Outc	omes

Outcomes	1	2	3	4	5	6	7	8	9	10	11	12]	l	2	
CO1	1	3	3	1	2	1	2	1	3	2	1	3	1	L	1	
CO2	3	3	1	3	2	1	3	2	1	3	2	1	4	2	1	
CO3	3	1	3	3	1	1	3	2	1	1	1	1]	l	2	
CO4	1	3	3	2	2	1	2	1	3	3	1	2]	L	1	
CO5	2	1	3	3	2	1	2	3	1	2	3	3	1	L	2	
																1
CH1610				INDU	STRL	AL IN	STRU	MEN	ГАТІ	DN			L 3	T 0	P 0	
CO2underCO3underCO4under	oduce ues of mes (C ze repe stand t stand t stand t stand t stand t ualities ter remen	the me accele 20) eatabili he mea he mea he mea he mea the mea t: Press	ration, ty, pre asurem asurem asurem asurem ment S easurer	Vibra cision ent tec ent tec ent tec ent tec ystem ment, tec fethod	and ac chnique	d dens curacy es for p es for t es for f es for c nents o oncept essure	ity of the pressur empera low an compos of instr s of re measur	instrue e ature d Leve sition ument sponse	ments el s, stati e of fir	ic and st orde	dynan er type s, Elas	nic cha instru tic pre	aracte	eristic S, me trans	cs, ba	
Calibration of p Troubleshootin UNIT – III Temperature m Expansion temp and optical	oressur g easure	e meas	uring i Fempe	instrun rature,	nents, I	Mainte	enance	and rep	pair of	pressu tempe	re mea	nsuring measu	; instr	umer	nts,	io
UNIT – IV																
Flow Measuren flowmeters, Ca measurement, I dry materials. instrumentation UNIT – V Methods of co Mass spectrosce	libratio Direct Instru diagra mposit	on of f methoc iments am.	lowme ls, leve for A	eters, S el mea Analys	Selectio sureme is - r	on of f ent in p ecordi	lowme pressur ng ins	eters. L e vesse trume	Level r els, ma nts, in	neasure easurer idicatin	ement: nent o ng and	Metho f interf l sign	ods o Face l aling	f liqu evel, inst	uid le leve rume	ev 1 c ent
X	* *											Total	Perio	ods:	4	5
Text Books: 1. D. P. Eckman 2. J. P. Bentley, 3. G. C. Barney	Princ	iples of	f Meas	ureme	nt Syst	ems, I	Longma		04							
Deference Dec	ka•															
Reference Boo 1. D. Patranabis New Delhi, 199 2. William C. D	s, Prino 99.	-												-	-	

Course Outcomes					Pr	ogran	n Outco	omes					Sp	ograi ecifi tcom	c
outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	1	2
CO1	1	3	3	1	2	1	2	1	3	2	1	3	1		1
CO2	3	3	1	3	2	1	3	2	1	3	2	1	2		1
CO3	3	1	3	3	1	1	3	2	1	1	1	1	1		2
CO4	1	3	3	2	2	1	2	1	3	3	1	2	1		1
CO5	2	1	3	3	2	1	2	3	1	2	3	3	1		2
CH1611			E	LECT	ROCI	HEMI	CAL F	NGIN	EERI	NG			LT	P	
OBJECTIVE The course is a			nowled	lge abo	out elec	ctroche	emical J	process	s and it	s applic	cation		3 0	0	
CO3 To un CO4 To un	ndersta ndersta ndersta		corros basics theory emistr	ion cor of prin behind y: Fara	ntrol m nciples 1 differ aday's	easures of elec ent typ law -	s etro refi be of el Nerns	ning ectroch	nemical	Galvan	ic cell				
-Steven's laye UNIT – II Mass transfer i convention and disc electrode. UNIT – III	n elect 1 the co	crochen oncept	nical sy of limi	ystems ting cu	irrent o	over po	otential,	prima	ry-seco	ondary	curren	t distrił	oution –	rota	
Introduction to controlled and factors and cor corrosion contr removers. UNIT – IV Electro deposit	diffusi ntrol m rol – pi	ion con ethods rotectiv	trolled of vari e coati	corros ious fo ings –V	sion pro rms of /apor p	ocess. l corros ohase ii	Potentia ion-com nhibitor	al-pH c rosion rs – cat	diagran contro thodic	n, Forn l meas protect	ns of co ures- in ion, sa	orrosion ndustria crificial	n- defin al boiler l anodes	ition, wate s – Pa	er nin
Primary and se									mig	anouiz	ing c		e solar	coath	Ĩ
UNIT – V Electrodes use insoluble electr reactors, batch equation, figur Total Periods	odes – cell, fl es of n	Iron oz luidized	xide – s 1 bed e	semi co lectroc	onducti hemica	ng type al react	e etc. M tor, filt	letal fin er press	nishing s cell, s	-cell d	esign. t	ypes of	electro	chem	nic

Reference Books:

- 1. 1. Barak, M. and Stevenge, U. K., "Electrochemical Power Sources Primary and Secondary Batteries" 1980
 - 2. Mantell, C., "Electrochemical Engineering", McGraw Hill, 1972.

Course Outcomes		Program Outcomes														
	1	2	3	4	5	6	7	8	9	10	11	12	1	2		
CO1	1	3	3	1	2	1	2	1	3	2	1	3	1	1		
CO2	3	3	1	3	2	1	3	2	1	3	2	1	2	1		
CO3	3	1	3	3	1	1	3	2	1	1	1	1	1	2		
CO4	1	3	3	2	2	1	2	1	3	3	1	2	1	1		
CO5	2	1	3	3	2	1	2	3	1	2	3	3	1	2		

CH1612

PROCESS PLANT UTILITIES

C

3

9

9

9

9

OBJECTIVE

The course is aimed

> To enable the students to understand the process plant utilities and optimization techniques to optimize various parameters in chemical industries.

Course Outcomes (CO)	
----------------------	--

CO1	To understand the Chemical Softening and Demineralization
CO2	To understand the problems based on Steam, Types of Steam Generator
CO3	To understand the Monochlorodifluro Methane, Chlorofluro Carbons and Brins
CO4	To understand the Air – Water Vapors and use of Humidity Chart and its calculation
CO5	To understand the Natural Gas, Liquid Petroleum Fuels, Coal and Coke

UNIT – I IMPORTANT OF UTILITIES

Hard and Soft water, Requisites of Industrial Water and its uses. Methods of water Treatment such as Chemical Softening and Demineralization, Resins used for Water Softening and Reverse Osmosis. Effects of impure Boiler Feed Water

UNIT – II STEAM AND STEAM GENERATION

Properties of Steam, problems based on Steam, Types of Steam Generator such as Solid Fuel Fired Boiler, Waste Gas Fired Boiler and Fluidized Bed Boiler. Scaling and Trouble Shooting. Steam Traps and Accessories.

UNIT – III REFRIGERATION

Refrigeration Cycles, Methods of Refrigeration used in Industry and Different Types of Refrigerants such as Monochlorodifluro Methane, Chlorofluro Carbons and Brins. Refrigerating Effects and Liquefaction Processes.

UNIT – IV COMPRESSED AIR

Classification of Compressor, Reciprocating Compressor, Single Stage and Two Stage Compressor, Velocity Diagram for Centrifugal Compressor, Silp Factor, Impeller Blade Shape. Properties of Air – Water Vapors and use of Humidity Chart. Equipments used for Humidification, Dehumidification and Cooling Towers.

UNIT – V FUEL AND WASTE DISPOSAL

Types of Fuel used in Chemical Process Industries for Power Generation such as Natural Gas, Liquid Petroleum Fuels, Coal and Coke. Internal Combustion Engine, Petrol and Diesel Engine. Waste Disposal.

Total Periods: 45

Text Books:

Eckenfelder, W. W, Jr. "Industrial Water Pollution Control" McGraw-Hill: New York, 1966.
 P. L. Ballaney, "Thermal Engineering", Khanna Publisher New Delhi, 1986.
 Perry R. H. Green D. W. "Perry's chemical Engineer's Handbook", McGraw Hill, New York, 2007.

R	Reference Bool	ks:													
1	. P. N. Anant	hanara	iyan, "	Basic I	Refrige	eration	& Air	condit	tioning	;", Tata	a McG	raw Hi	ll, New	Delhi,	2007.
	Course Outcomes							gram comes						Spe	gram ecific comes
		1	2	3	4	5	6	7	8	9	10	11	12	1	2
	CO1	1	3	3	1	2	1	2	1	3	2	1	3	1	1
	CO2	3	3	1	3	2	1	3	2	1	3	2	1	2	1
	CO3	3	1	3	3	1	1	3	2	1	1	1	1	1	2
	CO4	1	3	3	2	2	1	2	1	3	3	1	2	1	1
	CO5	2	1	3	3	2	1	2	3	1	2	3	3	1	2

PROFESSIONAL ELECTIVE III

CH	1710	MODERN SEPARATION TECHNIQUES	L	Т	Р	С
	-		3	0	0	3
OBJEC	TIVE					
The cour	rse is aime	ed to				
\succ	Students v	vill gain knowledge about recent separation methods				
Course	Outcome	s (CO)				
CO1	To unde	rstand the basics of separation process				
CO2	To unde	rstand membrane separations				
CO3	To unde	rstand the separation by adsorption				
CO4	To unde	rstand the inorganic separations				
CO5	To unde	rstand the other pervaporation and permeation techniques				
UNIT –	Ι	BASICS OF SEPARATION PROCESS				9
		ntional Processes, Recent advances in Separation Techniques based on size, s				
		nd other special characteristics of substances, Process concept, Theory and H				
cross flo	w Filtrati	on, cross flow Electro Filtration, Surface based solid - liquid separations in	ivolv	ing a	seco	ond
liquid.						
UNIT –	II	MEMBRANE SEPARATIONS				9

Types and choice of Membranes, Plate and Frame, tubular, spiral wound and hollow fiber Membrane Reactors and their relative merits, commercial, Pilot Plant and Laboratory Membrane permeators involving Dialysis, Reverse Osmosis, Nanofiltration, Ultra filtration and Micro filtration, CeramicHybrid process and Biological Membranes. 9

UNIT – III SEPARATION BY ADSORPTION

Types and choice of Adsorbents, Adsorption Techniques, Dehumidification Techniques, Affinity Chromatography and Immuno Chromatography, Recent Trends in Adsorption.

UNIT – IV **INORGANIC SEPARATIONS**

Controlling factors, Applications, Types of Equipment employed for Electrophoresis, Dielectrophoresis, Ion Exchange Chromatography and Eletrodialysis, EDR, Bipolar Membranes.

OTHER TECHNIQUES UNIT – V

Separation involving Lyophilisation, Pervaporation and Permeation Techniques for solids, liquids and gases, zone melting, Adductive Crystallization, other Separation Processes, Supercritical fluid Extraction, Oil spill Management, Industrial Effluent Treatment by Modern Techniques.

> **Total Periods:** 45

9

9

King, C. J., " Roussel, R. V Nakagawal, (V., "Ha	andboc	ok of S	eparat	ion Pro	ocess T	echno	logy",				York, 19	87.	
Course Outcomes							gram comes						Spe	gram ecific come
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1	3	3	1	2	1	2	1	3	2	1	3	1	1
CO2	3	3	1	3	2	1	3	2	1	3	2	1	2	1
CO3	3	1	3	3	1	1	3	2	1	1	1	1	1	2
CO4	1	3	3	2	2	1	2	1	3	3	1	2	1	1
CO5	2	1	3	3	2	1	2	3	1	2	3	3	1	2

CH1711 WASTE WATER TREATMENT L Т Р 3 0 0

OBJECTIVE

The course is aimed

To focus on the wastewater transport system and the theory and design technique for the wastewater \geq treatment process.

Course	Outcomes (CO)
CO1	To understand the Regulations – Health and Environment Concerns in waste water.
CO2	To understand the process analysis and selection
CO3	To understand the chemical unit process in water treatment

CO4 To und	erstand the principle of biological treatment.	
	erstand the filtration, Membrane and ion exchanger	
UNIT – I	WASTE WATER TREATMENT AN OVERVIEW	9
	Regulations – Health and Environment Concerns in waste water management – Constitue	nts in
	ganic – Organic and metallic constituents.	
UNIT – II	PROCESS ANALYSIS AND SELECTION	9
	waste water flows – Analysis of Data – Reactors used in waste water treatment – Mass Ba elling of ideal and non ideal flow in Reactors – Process Selection.	ilance
UNIT – III	CHEMICAL UNIT PROCESSES	9
Role of unit pro	cesses in waste water treatment chemical coagulation - Chemical precipitation for imp	roved
plant performance	ce chemical oxidation – Neutralization – Chemical Storage	
UNIT – IV	BIOLOGICAL TREATMENT	9
oxidation - Ana	ogical Treatment – Microbial metabolism – Bacterial growth and energatus – Aerobic biol aerobic fermentation and oxidation – Trickling filters – Rotating biological contractic processes – Activated sludge film packing.	
UNIT – V	ADVANCED WASTE WATER TREATMENT	9
Technologies us	ed in advanced treatment – Classification of technologies Removal of Colloids and susp	ended
particles - Depth	n Filtration – Surface Filtration – Membrane Filtration Absorption – Ion Exchange – Adv	anced
oxidation proces	S.	
	Total Periods:	45
Text Books:		
	Engineering Treatment and Reuse: Mc Graw Hill, G. Tchobanoglous, FI Biston, 2002.	
2. Industrial Was	ste Water Management Treatment and Disposal by Waste Water Mc Graw Hill III Edition	2008.

Course Outcomes							ogram comes						Spe	gram cific come
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1	3	3	1	2	1	2	1	3	2	1	3	1	1
CO2	3	3	1	3	2	1	3	2	1	3	2	1	2	1
CO3	3	1	3	3	1	1	3	2	1	1	1	1	1	2
CO4	1	3	3	2	2	1	2	1	3	3	1	2	1	1
CO5	2	1	3	3	2	1	2	3	1	2	3	3	1	2

CH1712	FLUIDIZATION ENGINEERING	L	Т	Р	(
		3	0	0	3
OBJECTIVE					
The course is aimed					

 \succ To enable the students to learn the design aspects of fluidized beds.

Course	Outcomes (CO)	
CO1	To understand the fundamental concepts of Fluidization	
CO2	To understand the Minimum fluidization conditions	
CO3	To understand the Bed expansion in liquid – Solid and gas – Solid fluidizations	
CO4	To understand the Heat and mass transfer in fluidized bed systems	
CO5	To understand the Single stage and multistage fluidization	
UNIT –	- I BASICS OF FLUIDIZATION	9
	bed – Velocity – Pressure drop relations – Correlations of Ergun, Kozneykarman – On set of fluidizatio rties of fluidized beds – Development of fluidization from fixed bed.	n
UNIT –	- II FLUIDIZED BED TYPES	9
Minimu bed.	Im fluidization conditions – Expanded bed – Elutriation – Moving solids and dilute phase – spouted	
UNIT –	- III DESIGN ASPECTS	9
Channel systems	ling – Bed expansion in liquid – Solid and gas – Solid fluidizations. Design aspects of fluidized be	d
UNIT –	- IV HEAT AND MASS TRANSFER IN FLUIDIZED BEDS	9
Heat an systems	nd mass transfer in fluidized bed systems – Industrial applications and case studies of fluidized bed	d

UNIT – V OTHER TYPES OF FLUIDIZATION

Single stage and multistage fluidization – Collection of fines – Use of cyclones.

Total Periods: 45

9

Text Books:

1. Levenspiel, "Fluidization Engineering", 2nd Edition, Butterworth – Heinmann, 1991.

2. Robert H. Perry and Don W. Green, "Perry's Chemical Engineer's Hand Book", 7th Edition, Mc Graw Hill – International, 1997.

Reference Books:

1. Rowe and Davidson, "Fluidization", Academic Press ,1971.

2. Leva, M., "Fluidization", McGraw Hill Book Co, 1959.

3. Wen-Ching Yang., "Handbook of Fluidization and Fluid-Particle Systems", Marcel Dekker Inc, 2003.

Course Outcomes					Pr	ogram	Outco	omes						Spe	gram ecific come	
	1	2	3	4	5	6	7	8	9	10	11	12		1	2	
CO1	1	3	3	1	2	1	2	1	3	2	1	3		1	1	
CO2	3	3	1	3	2	1	3	2	1	3	2	1		2	1	
CO3	3	1	3	3	1	1	3	2	1	1	1	1		1	2	
CO4	1	3	3	2	2	1	2	1	3	3	1	2		1	1	
CO5	2	1	3	3	2	1	2	3	1	2	3	3		1	2	
CH1713					D	ISTIL	LATI	ON					L	T	P	С
	1												3	0	0	3

 To provide the basic knowledge on Principles of Distillation Process and Industrial Application. To familiarize the students, the functioning of different types of Distillation Processes To illustrate the concepts of various types of Distillation Processes and Design Course Outcomes (CO) CO1 Understanding of the Basic Principles of Distillation Processes CO2 Distinguish between Different types of Distillation Processes. CO3 Understanding the different types of Distillation Processes CO4 Understanding the different types of Distillation Processes CO5 And the concepts of various types of Distillation Processes CO5 And the concepts of various types of Distillation Processes and Design UNIT - I Gibbs phase rule, phase equilibrium, ideal and non-ideal gas mixtures, Raoult's law, nonideal liquid - liqui mixtures; phase diagrams, effect of pressure on phase equilibria; Vapor Liquid Equilibria: Ideal and non-ideal processes (UNIT - II Gibbs phase rule, phase equilibrium, ideal and procession of binary and multi-component systems - Correlation and prediction - consistency tests; VLE of complex system true boiling point curves-ASTM distillation; fractionation of binary and multi-component systems. Sorel method, Lewis-Matheson method, Thiele-Geddes me short cur methods, graphical evaluation of number of ages for termary systems. Complex system fractional Pseudo-component design method, fraction with side streams. UNIT - IV Total Periods: Total Periods:	OBJECT The cours	se is aimed	
▶ To illustrate the concepts of various types of Distillation Processes and Design COIT Understanding of the Basic Principles of Distillation Process CO2 Distinguish between Different types of Distillation Processes. CO3 Understanding of Industrial application of Distillation Processes CO4 Understanding the different types of Distillation Processes CO5 And the concepts of various types of Distillation Processes CO5 And the concepts of various types of Distillation Processes CO6 Understanding the different types of Distillation processes CO5 And the concepts of pressure on phase equilibria; Vapor Liquid Equilibria: Ideal and non-ideal gas mixtures; phase diagrams, effect of pressure on phase equilibria; Vapor Liquid Equilibria: Ideal and non-ideal gas mixtures; phase diagrams, effect of pressure on phase equilibria; Vapor Liquid Equilibria: Ideal and non-ideal gas mixtures; phase diagrams, effect of pressure on phase equilibrium flash vaporization curves UNIT – II			
Course Outcomes (CO) CO CO1 Understanding of the Basic Principles of Distillation Processs CO2 Distinguish between Different types of Distillation Processes. CO3 Understanding the different types of Distillation Processes CO4 Understanding the different types of Distillation Processes CO5 And the concepts of various types of Distillation Processes CO6 Inderstanding the different types of Distillation Processes and Design WIT - I Gibbs phase rule, phase equilibrium, ideal and non-ideal gas mixtures, Raoult's law, nonideal liquid - liqui mixtures: phase diagrams, effect of pressure on phase equilibria; Vapor Liquid Equilibria: Ideal and non-id binary and multi-component systems - Correlation and prediction – consistency tests; VLE of complex system UNIT - I	≻ T	o familiarize the students, the functioning of different types of	Distillation Processes
CO1 Understanding of the Basic Principles of Distillation Processs CO2 Distinguish between Different types of Distillation Processes. CO3 Understanding of Industrial application of Distillation Processes CO4 Understanding of Industrial application of Distillation Processes CO5 And the concepts of various types of Distillation Processes and Design UNIT - I	≻ T	o illustrate the concepts of various types of Distillation Process	ses and Design
CO2 Distinguish between Different types of Distillation Processes. CO3 Understanding of Industrial application of Distillation Processes. CO4 Understanding the different types of Distillation Processes and Design CO5 And the concepts of various types of Distillation Processes and Design UNIT - I			
CO3 Understanding of Industrial application of Distillation Process. CO4 Understanding the different types of Distillation Processes CO5 And the concepts of various types of Distillation Processes and Design UNIT - I Gibbs phase rule, phase equilibrium, ideal and non-ideal gas mixtures, Raoult's law, nonideal liquid - liqui mixtures; phase diagrams, effect of pressure on phase equilibria; Vapor Liquid Equilibria: Ideal and non-ideal binary and multi-component systems - Correlation and prediction -consistency tests; VLE of complex system true boiling point curves-ASTM distillation, equilibrium flash vaporization curves Equilibrium and simple distillation: flash vaporization of binary and multi-component systems, differe vaporization and condensation: steam distillation; fractionation of binary systems- analytical and grap methods of determination of number of equilibrium stages. UNIT - III			
CO4 Understanding the different types of Distillation Processes CO5 And the concepts of various types of Distillation Processes and Design UNIT - I			
CO5 And the concepts of various types of Distillation Processes and Design UNIT - I			
UNIT – I Gibbs phase rule, phase equilibrium, ideal and non-ideal gas mixtures, Raoult's law, nonideal liquid - liqui mixtures; phase diagrams, effect of pressure on phase equilibria; Vapor Liquid Equilibria: Ideal and non-id binary and multi-component systems - Correlation and prediction –consistency tests; VLE of complex syste true boiling point curves-ASTM distillation, equilibrium flash vaporization curves UNIT – II Equilibrium and simple distillation: flash vaporization of binary and multi-component systems, differe vaporization and condensation; steam distillation; fractionation of binary systems- analytical and grap methods of determination of number of equilibrium stages. UNIT – III Ternary systems and multi-component systems- Sorel method, Lewis-Matheson method, Thiele-Geddes met short cut methods, graphical evaluation of number of stages for ternary systems. Complex system fractiona Pseudo-component design method, fraction with side streams. UNIT – IV Azeotropic distillation process; Reactive Distillation: separation of homogeneous azeotropes, separation of heterogeneous azeotropes, selection of addition and Case studies. UNIT – V Design methods: fractionation devices, bubble cap, sieve and other types of trays-plate and column hydra and efficiency plate fractionation column design methods, packed column design Text Books: 1. Van Winkle, M., Distillation, 2nd ed, 1967, McGraw Hill publications. 2. Doherty, M.F and Malone, M.F., Conceptual Design of Distillation systems, 2006, McGraw Hill Internat Edm Reference Books: 1. 1. Holland, Multi-component Distillation. First Edn., 1963			
Gibbs phase rule, phase equilibrium, ideal and non-ideal gas mixtures, Raoult's law, nonideal liquid - liqui mixtures; phase diagrams, effect of pressure on phase equilibria; Vapor Liquid Equilibria: Ideal and non-id binary and multi-component systems - Correlation and prediction –consistency tests; VLE of complex syste true boiling point curves-ASTM distillation, equilibrium flash vaporization curves UNIT – II Equilibrium and simple distillation: flash vaporization of binary and multi-component systems, differe vaporization and condensation; steam distillation; fractionation of binary systems- analytical and grap methods of determination of number of equilibrium stages. UNIT – III Ternary systems and multi-component systems- Sorel method, Lewis-Matheson method, Thiele-Geddes met short cut methods, graphical evaluation of number of stages for ternary systems. Complex system fractiona Pseudo-component design method, fraction with side streams. UNIT – IV Azeotropic distillation and extractive distillation: separation of homogeneous azeoptropes, separation of heterogeneous azeotropes, selection of addition agents-design of azeotropic distillation process; design of extractive distillation process; Reactive Distillation and Case studies. UNIT – V Design methods: fractionation devices, bubble cap, sieve and other types of trays-plate and column hydra and efficiency- plate fractionation column design methods, packed column design Total Periods: 1. Van Winkle, M., Distillation, 2nd ed. 1967, McGraw Hill publications. 2. Doherty, M.F and Malone, M.F., Conceptual Design of Distillation systems, 2006, McGraw Hill Internat Edm Reference Books: 1. Holland, Multi-component Distillation. First Edn., 1963 2 Treybal, R.E., Mass Transfer Operation, 3rd Edn., 1981, McGraw Hill 3 McCabe, W.L., Smith, J.C. and P.Harriot, Unit Operations in Chemical Engineering, VIIth Edn., 2005, Mc Hill. 4 Sherwood, T.K., Pigford, R.L. and Cr. Wilke., Mass Transfer, McGraw Hill	CO5	And the concepts of various types of Distillation Processes and	l Design
Gibbs phase rule, phase equilibrium, ideal and non-ideal gas mixtures, Raoult's law, nonideal liquid - liqui mixtures; phase diagrams, effect of pressure on phase equilibria; Vapor Liquid Equilibria: Ideal and non-ideal binary and multi-component systems - Correlation and prediction –consistency tests; VLE of complex system true boiling point curves-ASTM distillation, equilibrium flash vaporization curves UNIT - II Equilibrium and simple distillation: flash vaporization of binary and multi-component systems, differe vaporization and condensation; steam distillation; fractionation of binary systems- analytical and grap methods of determination of number of equilibrium stages. UNIT - III Ternary systems and multi-component systems- Sorel method, Lewis-Matheson method, Thiele-Geddes method; graphical evaluation of number of stages for ternary systems. Complex system fractiona Pseudo-component design method, fraction with side streams. UNIT - IV Azeotropic distillation and extractive distillation: separation of homogeneous azeoptropes, separation of heterogeneous azeotropes, selection of addition agents-design of azeotropic distillation process; design of extractive distillation process; Reactive Distillation and Case studies. UNIT - V Design methods: fractionation devices, bubble cap, sieve and other types of trays-plate and column hydra and efficiency- plate fractionation column design methods, packed column design Text Books: 1. Van Winkle,M., Distillation, 2nd ed. 1967, McGraw Hill publications. 2. Doherty, M.F and Malone, M.F., Conceptual Design of Distillation systems, 2006, McGraw Hill Internat Edm Reference Books: 1. Holl	UNIT – I	[
mixtures; phase diagrams, effect of pressure on phase equilibria; Vapor Liquid Equilibria: Ideal and non-id binary and multi-component systems - Correlation and prediction –consistency tests; VLE of complex syste true boiling point curves-ASTM distillation, equilibrium flash vaporization curves UNIT – II Equilibrium and simple distillation: flash vaporization of binary and multi-component systems, differe vaporization and condensation; steam distillation; fractionation of binary systems- analytical and grap methods of determination of number of equilibrium stages. UNIT – III Ternary systems and multi-component systems- Sorel method, Lewis-Matheson method, Thiele-Geddes met short cut methods, graphical evaluation of number of stages for ternary systems. Complex system fractiona Pseudo-component design method, fraction with side streams. UNIT – IV Azeotropic distillation and extractive distillation: separation of homogeneous azeoptropes, separation of heterogeneous azeotropes, selection of addition agents-design of azeotropic distillation process; design of extractive distillation process; Reactive Distillation and Case studies. UNIT – V Design methods: fractionation devices, bubble cap, sieve and other types of trays-plate and column hydra and efficiency- plate fractionation column design methods, packed column design Total Periods: 1. Van Winkle, M., Distillation, 2nd ed. 1967, McGraw Hill publications. 2. Doherty, M.F and Malone, M.F., Conceptual Design of Distillation systems, 2006, McGraw Hill Internat Edn Reference Books: 1. Holland, Multi-component Distillation. First Edn., 1963 2 Treybal, R.E., Mass Transfer Operation, 3rd Edn., 1981, McGraw Hill 3 McCabe, W.L., Smith, J.C. and P.Harriot, Unit Operations in Chemical Engineering, VIIth Edn., 2005, Mc Hill. 4 Sherwood, T.K., Pigford, R.L and Cr. Wilke., Mass Transfer, McGraw Hill			
Equilibrium and simple distillation: flash vaporization of binary and multi-component systems, differe vaporization and condensation; steam distillation; fractionation of binary systems- analytical and grap methods of determination of number of equilibrium stages. UNIT - III	binary and true boilir	d multi-component systems - Correlation and prediction –consi ng point curves-ASTM distillation, equilibrium flash vaporizati	istency tests; VLE of complex system
vaporization and condensation; steam distillation; fractionation of binary systems- analytical and grap methods of determination of number of equilibrium stages. UNIT – III Ternary systems and multi-component systems- Sorel method, Lewis-Matheson method, Thiele-Geddes met short cut methods, graphical evaluation of number of stages for ternary systems. Complex system fractiona Pseudo-component design method, fraction with side streams. UNIT – IV Azeotropic distillation and extractive distillation: separation of homogeneous azeoptropes, separation of heterogeneous azeotropes, selection of addition agents-design of azeotropic distillation process; design of extractive distillation process; Reactive Distillation and Case studies. UNIT – V Design methods: fractionation devices, bubble cap, sieve and other types of trays-plate and column hydra and efficiency- plate fractionation column design methods, packed column design Total Periods: 1. Van Winkle,M., Distillation, 2nd ed. 1967, McGraw Hill publications. 2. Doherty, M.F and Malone, M.F., Conceptual Design of Distillation systems, 2006, McGraw Hill Internat Edn Reference Books: 1. Holland, Multi-component Distillation. First Edn., 1963 2 Treybal,R.E.,Mass Transfer Operation, 3rd Edn., 1981, McGraw Hill 3 McCabe,W.L., Smith,J.C. and P.Harriot, Unit Operations in Chemical Engineering, VIIth Edn., 2005, Mc Hill. 4 Sherwood,T.K.,Pigford,R.L and Cr.Wilke., Mass Transfer, McGraw Hill			multi-component systems. differenti
methods of determination of number of equilibrium stages. UNIT - III Ternary systems and multi-component systems- Sorel method, Lewis-Matheson method, Thiele-Geddes methods, graphical evaluation of number of stages for ternary systems. Complex system fractiona Pseudo-component design method, fraction with side streams. UNIT - IV Azeotropic distillation and extractive distillation: separation of homogeneous azeoptropes, separation of heterogeneous azeotropes, selection of addition agents-design of azeotropic distillation process; Reactive Distillation and Case studies. UNIT - V Design methods: fractionation devices, bubble cap, sieve and other types of trays-plate and column hydra and efficiency- plate fractionation column design methods, packed column design Text Books: 1. Van Winkle,M., Distillation, 2nd ed. 1967, McGraw Hill publications. 2. Doherty, M.F and Malone, M.F., Conceptual Design of Distillation systems, 2006, McGraw Hill Internat Edn Reference Books: 1. Holland, Multi-component Distillation. First Edn., 1963 2 Treybal,R.E.,Mass Transfer Operation, 3rd Edn., 1981, McGraw Hill 3 McCabe,W.L., Smith,J.C. and P.Harriot, Unit Operations in Chemical Engineering, VIIth Edn., 2005, McHill 4 Sherwood,T.K.,Pigford,R.L and Cr.Wilke., Mass Transfer, McGraw Hill			
UNIT - III Ternary systems and multi-component systems- Sorel method, Lewis-Matheson method, Thiele-Geddes mets short cut methods, graphical evaluation of number of stages for ternary systems. Complex system fractiona Pseudo-component design method, fraction with side streams. UNIT - IV Azeotropic distillation and extractive distillation: separation of homogeneous azeoptropes, separation of heterogeneous azeotropes, selection of addition agents-design of azeotropic distillation process; Reactive Distillation and Case studies. UNIT - V Design methods: fractionation devices, bubble cap, sieve and other types of trays-plate and column hydra and efficiency- plate fractionation column design methods, packed column design Total Periods: 1. Van Winkle,M., Distillation, 2nd ed. 1967, McGraw Hill publications. 2. Doherty, M.F and Malone, M.F., Conceptual Design of Distillation systems, 2006, McGraw Hill Internat Edn Reference Books: 1. Holland, Multi-component Distillation. First Edn., 1963 2 Treybal, R.E.,Mass Transfer Operation, 3rd Edn., 1981, McGraw Hill 3 McCabe, W.L., Smith, J.C. and P.Harriot, Unit Operations in Chemical Engineering, VIIth Edn., 2005, McGraw Hill 4 Sherwood, T.K., Pigford, R.L and Cr.Wilke., Mass Transfer, McGraw Hill			
short cut methods, graphical evaluation of number of stages for ternary systems. Complex system fractiona Pseudo-component design method, fraction with side streams. UNIT – IV Azeotropic distillation and extractive distillation: separation of homogeneous azeoptropes, separation of heterogeneous azeotropes, selection of addition agents-design of azeotropic distillation process, design of extractive distillation process; Reactive Distillation and Case studies. UNIT – V Design methods: fractionation devices, bubble cap, sieve and other types of trays-plate and column hydra and efficiency- plate fractionation column design methods, packed column design Total Periods: Text Books: 1. Van Winkle, M., Distillation, 2nd ed. 1967, McGraw Hill publications. 2. Doherty, M.F and Malone, M.F., Conceptual Design of Distillation systems, 2006, McGraw Hill Internat Edin Reference Books: 1. Holland, Multi-component Distillation. First Edn., 1963 2 Treybal, R.E., Mass Transfer Operation, 3rd Edn., 1981, McGraw Hill 3 McCabe, W.L., Smith, J.C. and P.Harriot, Unit Operations in Chemical Engineering, VIIth Edn., 2005, McHill 4 Sherwood, T.K., Pigford, R.L and Cr. Wilke., Mass Transfer, McGraw Hill			
Pseudo-component design method, fraction with side streams. UNIT - IV Azeotropic distillation and extractive distillation: separation of homogeneous azeoptropes, separation of heterogeneous azeotropes, selection of addition agents-design of azeotropic distillation process, design of extractive distillation process; Reactive Distillation and Case studies. UNIT - V	Ternary sy	ystems and multi-component systems- Sorel method, Lewis-Ma	atheson method, Thiele-Geddes metho
UNIT - IV Azeotropic distillation and extractive distillation: separation of homogeneous azeoptropes, separation of heterogeneous azeotropes, selection of addition agents-design of azeotropic distillation process, design of extractive distillation process; Reactive Distillation and Case studies. UNIT - V Design methods: fractionation devices, bubble cap, sieve and other types of trays-plate and column hydra and efficiency- plate fractionation column design methods, packed column design Total Periods: Text Books: 1. Van Winkle, M., Distillation, 2nd ed. 1967, McGraw Hill publications. 2. Doherty, M.F and Malone, M.F., Conceptual Design of Distillation systems, 2006, McGraw Hill Internat Edn Reference Books: 1. Holland, Multi-component Distillation. First Edn., 1963 2 Treybal, R.E., Mass Transfer Operation, 3rd Edn., 1981, McGraw Hill 3 McCabe, W.L., Smith, J.C. and P.Harriot, Unit Operations in Chemical Engineering, VIIth Edn., 2005, McHill 4 Sherwood, T.K., Pigford, R.L and Cr. Wilke., Mass Transfer, McGraw Hill			systems. Complex system fractionatio
Azeotropic distillation and extractive distillation: separation of homogeneous azeoptropes, separation of heterogeneous azeotropes, selection of addition agents-design of azeotropic distillation process, design of extractive distillation process; Reactive Distillation and Case studies. UNIT – V Design methods: fractionation devices, bubble cap, sieve and other types of trays-plate and column hydra and efficiency- plate fractionation column design methods, packed column design Total Periods: Text Books: 1. Van Winkle,M., Distillation, 2nd ed. 1967, McGraw Hill publications. 2. Doherty, M.F and Malone, M.F., Conceptual Design of Distillation systems, 2006, McGraw Hill Internat Edn Reference Books: 1. Holland, Multi-component Distillation. First Edn., 1963 2 Treybal,R.E.,Mass Transfer Operation, 3rd Edn., 1981, McGraw Hill 3 McCabe,W.L., Smith,J.C. and P.Harriot, Unit Operations in Chemical Engineering, VIIth Edn., 2005, McGraw Hill 4 Sherwood,T.K.,Pigford,R.L and Cr.Wilke., Mass Transfer, McGraw Hill			
heterogeneous azeotropes, selection of addition agents-design of azeotropic distillation process, design of extractive distillation process; Reactive Distillation and Case studies. UNIT - V Design methods: fractionation devices, bubble cap, sieve and other types of trays-plate and column hydra and efficiency- plate fractionation column design methods, packed column design Total Periods: Total Periods: Text Books: 1. Van Winkle,M., Distillation, 2nd ed. 1967, McGraw Hill publications. 2. Doherty, M.F and Malone, M.F., Conceptual Design of Distillation systems, 2006, McGraw Hill Internat Edn Reference Books: 1. Holland, Multi-component Distillation. First Edn., 1963 2 Treybal,R.E.,Mass Transfer Operation, 3rd Edn., 1981, McGraw Hill 3 McCabe,W.L., Smith,J.C. and P.Harriot, Unit Operations in Chemical Engineering, VIIth Edn., 2005, McG Hill. 4 Sherwood,T.K.,Pigford,R.L and Cr.Wilke., Mass Transfer, McGraw Hill			
extractive distillation process; Reactive Distillation and Case studies. UNIT - V Design methods: fractionation devices, bubble cap, sieve and other types of trays-plate and column hydra and efficiency- plate fractionation column design methods, packed column design Total Periods: Text Books: 1. Van Winkle,M., Distillation, 2nd ed. 1967, McGraw Hill publications. 2. Doherty, M.F and Malone, M.F., Conceptual Design of Distillation systems, 2006, McGraw Hill Internat Edn Reference Books: 1. Holland, Multi-component Distillation. First Edn., 1963 2 Treybal,R.E.,Mass Transfer Operation, 3rd Edn., 1981, McGraw Hill 3 McCabe,W.L., Smith,J.C. and P.Harriot, Unit Operations in Chemical Engineering, VIIth Edn., 2005, McGraw Hill 4 Sherwood,T.K.,Pigford,R.L and Cr.Wilke., Mass Transfer, McGraw Hill			
UNIT - V Design methods: fractionation devices, bubble cap, sieve and other types of trays-plate and column hydra and efficiency- plate fractionation column design methods, packed column design Total Periods: Total Periods: Total Periods: Text Books: 1. Van Winkle, M., Distillation, 2nd ed. 1967, McGraw Hill publications. 2. Doherty, M.F and Malone, M.F., Conceptual Design of Distillation systems, 2006, McGraw Hill Internat Edn Reference Books: 1. Holland, Multi-component Distillation. First Edn., 1963 2 Treybal, R.E., Mass Transfer Operation, 3rd Edn., 1981, McGraw Hill 3 McCabe, W.L., Smith, J.C. and P.Harriot, Unit Operations in Chemical Engineering, VIIth Edn., 2005, McGraw Hill. 4 Sherwood, T.K., Pigford, R.L and Cr. Wilke., Mass Transfer, McGraw Hill	Azeotropi	ic distillation and extractive distillation: separation of homogen	
Design methods: fractionation devices, bubble cap, sieve and other types of trays-plate and column hydra and efficiency- plate fractionation column design methods, packed column design Total Periods: Total Periods: Text Books: 1. Van Winkle,M., Distillation, 2nd ed. 1967, McGraw Hill publications. 2. Doherty, M.F and Malone, M.F., Conceptual Design of Distillation systems, 2006, McGraw Hill Internat Edn Reference Books: 1. Holland, Multi-component Distillation. First Edn., 1963 2 Treybal,R.E.,Mass Transfer Operation, 3rd Edn., 1981, McGraw Hill 3 McCabe,W.L., Smith,J.C. and P.Harriot, Unit Operations in Chemical Engineering, VIIth Edn., 2005, McC Hill. 4 Sherwood,T.K.,Pigford,R.L and Cr.Wilke., Mass Transfer, McGraw Hill	Azeotropi heterogen	ic distillation and extractive distillation: separation of homogen neous azeotropes, selection of addition agents-design of azeotro	
and efficiency- plate fractionation column design methods, packed column design Total Periods: Total Periods: Text Books: 1. Van Winkle,M., Distillation, 2nd ed. 1967, McGraw Hill publications. 2. Doherty, M.F and Malone, M.F., Conceptual Design of Distillation systems, 2006, McGraw Hill Internat Edn Reference Books: 1. Holland, Multi-component Distillation. First Edn., 1963 2 Treybal,R.E.,Mass Transfer Operation, 3rd Edn., 1981, McGraw Hill 3 McCabe,W.L., Smith,J.C. and P.Harriot, Unit Operations in Chemical Engineering, VIIth Edn., 2005, McHill 4 Sherwood,T.K.,Pigford,R.L and Cr.Wilke., Mass Transfer, McGraw Hill	Azeotropi heterogen extractive	ic distillation and extractive distillation: separation of homogen neous azeotropes, selection of addition agents-design of azeotro e distillation process; Reactive Distillation and Case studies.	
Text Books: 1. Van Winkle, M., Distillation, 2nd ed. 1967, McGraw Hill publications. 2. Doherty, M.F and Malone, M.F., Conceptual Design of Distillation systems, 2006, McGraw Hill Internat Edn Reference Books: 1. Holland, Multi-component Distillation. First Edn., 1963 2 Treybal, R.E., Mass Transfer Operation, 3rd Edn., 1981, McGraw Hill 3 McCabe, W.L., Smith, J.C. and P.Harriot, Unit Operations in Chemical Engineering, VIIth Edn., 2005, McHill. 4 Sherwood, T.K., Pigford, R.L and Cr. Wilke., Mass Transfer, McGraw Hill	Azeotropi heterogen extractive UNIT – V	ic distillation and extractive distillation: separation of homogen neous azeotropes, selection of addition agents-design of azeotro e distillation process; Reactive Distillation and Case studies.	ppic distillation process, design of
Text Books: 1. Van Winkle,M., Distillation, 2nd ed. 1967, McGraw Hill publications. 2. Doherty, M.F and Malone, M.F., Conceptual Design of Distillation systems, 2006, McGraw Hill Internat Edn Reference Books: 1. Holland, Multi-component Distillation. First Edn., 1963 2 Treybal,R.E.,Mass Transfer Operation, 3rd Edn., 1981, McGraw Hill 3 McCabe,W.L., Smith,J.C. and P.Harriot, Unit Operations in Chemical Engineering, VIIth Edn., 2005, McGraw Hill. 4 Sherwood,T.K.,Pigford,R.L and Cr.Wilke., Mass Transfer, McGraw Hill	Azeotropi heterogen extractive UNIT – V Design m	ic distillation and extractive distillation: separation of homogen neous azeotropes, selection of addition agents-design of azeotro e distillation process; Reactive Distillation and Case studies. V nethods: fractionation devices, bubble cap, sieve and other type	opic distillation process, design of
 Van Winkle, M., Distillation, 2nd ed. 1967, McGraw Hill publications. Doherty, M.F and Malone, M.F., Conceptual Design of Distillation systems, 2006, McGraw Hill Internat Edn Reference Books: Holland, Multi-component Distillation. First Edn., 1963 Treybal, R.E., Mass Transfer Operation, 3rd Edn., 1981, McGraw Hill McCabe, W.L., Smith, J.C. and P.Harriot, Unit Operations in Chemical Engineering, VIIth Edn., 2005, McGraw Hill. Sherwood, T.K., Pigford, R.L and Cr.Wilke., Mass Transfer, McGraw Hill 	Azeotropi heterogen extractive UNIT – V Design m	ic distillation and extractive distillation: separation of homogen neous azeotropes, selection of addition agents-design of azeotro e distillation process; Reactive Distillation and Case studies. V nethods: fractionation devices, bubble cap, sieve and other type	ppic distillation process, design of es of trays-plate and column hydrauli nn design
 2. Doherty, M.F and Malone, M.F., Conceptual Design of Distillation systems, 2006, McGraw Hill Internat Edn Reference Books: Holland, Multi-component Distillation. First Edn., 1963 Treybal, R.E., Mass Transfer Operation, 3rd Edn., 1981, McGraw Hill McCabe, W.L., Smith, J.C. and P.Harriot, Unit Operations in Chemical Engineering, VIIth Edn., 2005, McGHill. Sherwood, T.K., Pigford, R.L and Cr. Wilke., Mass Transfer, McGraw Hill 	Azeotropi heterogen extractive UNIT – V Design m	ic distillation and extractive distillation: separation of homogen neous azeotropes, selection of addition agents-design of azeotro e distillation process; Reactive Distillation and Case studies. V nethods: fractionation devices, bubble cap, sieve and other type	ppic distillation process, design of es of trays-plate and column hydrauli nn design
Edn Reference Books: 1. Holland, Multi-component Distillation. First Edn., 1963 2 Treybal,R.E.,Mass Transfer Operation, 3rd Edn., 1981, McGraw Hill 3 McCabe,W.L., Smith,J.C. and P.Harriot, Unit Operations in Chemical Engineering, VIIth Edn., 2005, McG Hill. 4 Sherwood,T.K.,Pigford,R.L and Cr.Wilke., Mass Transfer, McGraw Hill	Azeotropi heterogen extractive UNIT – V Design m and efficio	ic distillation and extractive distillation: separation of homogen neous azeotropes, selection of addition agents-design of azeotro e distillation process; Reactive Distillation and Case studies. V hethods: fractionation devices, bubble cap, sieve and other type ency- plate fractionation column design methods, packed colum	ppic distillation process, design of es of trays-plate and column hydrauli nn design
Reference Books: 1. Holland, Multi-component Distillation. First Edn., 1963 2 Treybal,R.E.,Mass Transfer Operation, 3rd Edn., 1981, McGraw Hill 3 McCabe,W.L., Smith,J.C. and P.Harriot, Unit Operations in Chemical Engineering, VIIth Edn., 2005, McG Hill. 4 Sherwood,T.K.,Pigford,R.L and Cr.Wilke., Mass Transfer, McGraw Hill	Azeotropi heterogen extractive UNIT – V Design m and efficio Text Boo	ic distillation and extractive distillation: separation of homogen neous azeotropes, selection of addition agents-design of azeotro e distillation process; Reactive Distillation and Case studies. V hethods: fractionation devices, bubble cap, sieve and other type ency- plate fractionation column design methods, packed colum	opic distillation process, design of es of trays-plate and column hydrauli nn design Total Periods: 45
 Holland, Multi-component Distillation. First Edn., 1963 Treybal,R.E.,Mass Transfer Operation, 3rd Edn., 1981, McGraw Hill McCabe,W.L., Smith,J.C. and P.Harriot, Unit Operations in Chemical Engineering, VIIth Edn., 2005, McG Hill. Sherwood,T.K.,Pigford,R.L and Cr.Wilke., Mass Transfer, McGraw Hill 	Azeotropi heterogen extractive UNIT – V Design m and efficio Text Boo 1. Van W	ic distillation and extractive distillation: separation of homogen neous azeotropes, selection of addition agents-design of azeotro e distillation process; Reactive Distillation and Case studies. V nethods: fractionation devices, bubble cap, sieve and other type ency- plate fractionation column design methods, packed colur oks: Vinkle,M., Distillation, 2nd ed. 1967, McGraw Hill publications	opic distillation process, design of es of trays-plate and column hydrauli nn design Total Periods: 45
 2 Treybal,R.E.,Mass Transfer Operation, 3rd Edn., 1981, McGraw Hill 3 McCabe,W.L., Smith,J.C. and P.Harriot, Unit Operations in Chemical Engineering, VIIth Edn., 2005, McG Hill. 4 Sherwood,T.K.,Pigford,R.L and Cr.Wilke., Mass Transfer, McGraw Hill 	Azeotropi heterogen extractive UNIT – V Design m and efficio Text Boo 1. Van W 2. Doherty Edn	ic distillation and extractive distillation: separation of homoger heous azeotropes, selection of addition agents-design of azeotro e distillation process; Reactive Distillation and Case studies. V hethods: fractionation devices, bubble cap, sieve and other type ency- plate fractionation column design methods, packed colur oks: Y inkle,M., Distillation, 2nd ed. 1967, McGraw Hill publications y, M.F and Malone, M.F., Conceptual Design of Distillation sy	opic distillation process, design of es of trays-plate and column hydrauli nn design Total Periods: 45
3 McCabe,W.L., Smith,J.C. and P.Harriot, Unit Operations in Chemical Engineering, VIIth Edn., 2005, McC Hill. 4 Sherwood,T.K.,Pigford,R.L and Cr.Wilke., Mass Transfer, McGraw Hill	Azeotropi heterogen extractive UNIT – V Design m and efficio Text Boo 1. Van Wi 2. Doherty Edn Reference	ic distillation and extractive distillation: separation of homogen neous azeotropes, selection of addition agents-design of azeotro e distillation process; Reactive Distillation and Case studies. V nethods: fractionation devices, bubble cap, sieve and other type ency- plate fractionation column design methods, packed colur oks: Vinkle,M., Distillation, 2nd ed. 1967, McGraw Hill publications y, M.F and Malone, M.F., Conceptual Design of Distillation sy the Books:	opic distillation process, design of es of trays-plate and column hydrauli nn design Total Periods: 45
Hill. 4 Sherwood,T.K.,Pigford,R.L and Cr.Wilke., Mass Transfer, McGraw Hill	Azeotropi heterogen extractive UNIT – V Design m and efficie Text Boo 1. Van Wi 2. Doherty Edn Reference 1. Holland	ic distillation and extractive distillation: separation of homogen neous azeotropes, selection of addition agents-design of azeotro e distillation process; Reactive Distillation and Case studies. V nethods: fractionation devices, bubble cap, sieve and other type ency- plate fractionation column design methods, packed colur oks: // inkle,M., Distillation, 2nd ed. 1967, McGraw Hill publications y, M.F and Malone, M.F., Conceptual Design of Distillation sy ee Books: d, Multi-component Distillation. First Edn., 1963	opic distillation process, design of es of trays-plate and column hydrauli nn design Total Periods: 45
4 Sherwood, T.K., Pigford, R.L and Cr. Wilke., Mass Transfer, McGraw Hill	Azeotropi heterogen extractive UNIT – V Design m and efficie Text Boo 1. Van W 2. Doherty Edn Reference 1. Holland 2 Treybal	ic distillation and extractive distillation: separation of homogen neous azeotropes, selection of addition agents-design of azeotro e distillation process; Reactive Distillation and Case studies. V hethods: fractionation devices, bubble cap, sieve and other type ency- plate fractionation column design methods, packed colur oks: Tinkle,M., Distillation, 2nd ed. 1967, McGraw Hill publications y, M.F and Malone, M.F., Conceptual Design of Distillation sy eBooks: d, Multi-component Distillation. First Edn., 1963 I,R.E.,Mass Transfer Operation, 3rd Edn., 1981, McGraw Hill	ppic distillation process, design of es of trays-plate and column hydrauli nn design Total Periods: 45 stems, 2006, McGraw Hill Internation
	Azeotropi heterogen extractive UNIT – V Design m and efficio Text Boo 1. Van W 2. Doherty Edn Reference 1. Holland 2 Treybal 3 McCabe	ic distillation and extractive distillation: separation of homogen neous azeotropes, selection of addition agents-design of azeotro e distillation process; Reactive Distillation and Case studies. V hethods: fractionation devices, bubble cap, sieve and other type ency- plate fractionation column design methods, packed colur oks: Tinkle,M., Distillation, 2nd ed. 1967, McGraw Hill publications y, M.F and Malone, M.F., Conceptual Design of Distillation sy eBooks: d, Multi-component Distillation. First Edn., 1963 I,R.E.,Mass Transfer Operation, 3rd Edn., 1981, McGraw Hill	ppic distillation process, design of es of trays-plate and column hydrauli nn design Total Periods: 45 stems, 2006, McGraw Hill Internation
Program	Azeotropi heterogen extractive UNIT – V Design m and efficio Text Boo 1. Van Wi 2. Doherty Edn Reference 1. Holland 2 Treybal 3 McCabe Hill.	ic distillation and extractive distillation: separation of homogen neous azeotropes, selection of addition agents-design of azeotro e distillation process; Reactive Distillation and Case studies. V hethods: fractionation devices, bubble cap, sieve and other type ency- plate fractionation column design methods, packed colur oks: Yinkle, M., Distillation, 2nd ed. 1967, McGraw Hill publications y, M.F and Malone, M.F., Conceptual Design of Distillation sy re Books: d, Multi-component Distillation. First Edn., 1963 I,R.E.,Mass Transfer Operation, 3rd Edn., 1981, McGraw Hill e,W.L., Smith, J.C. and P.Harriot, Unit Operations in Chemical 2	ppic distillation process, design of es of trays-plate and column hydrauli nn design Total Periods: 45 stems, 2006, McGraw Hill Internation Engineering, VIIth Edn., 2005, McGra
Program	Azeotropi heterogen extractive UNIT – V Design m and efficio Text Boo 1. Van Wi 2. Doherty Edn Reference 1. Holland 2 Treybal 3 McCabe Hill.	ic distillation and extractive distillation: separation of homogen neous azeotropes, selection of addition agents-design of azeotro e distillation process; Reactive Distillation and Case studies. V hethods: fractionation devices, bubble cap, sieve and other type ency- plate fractionation column design methods, packed colur oks: Yinkle, M., Distillation, 2nd ed. 1967, McGraw Hill publications y, M.F and Malone, M.F., Conceptual Design of Distillation sy re Books: d, Multi-component Distillation. First Edn., 1963 I,R.E.,Mass Transfer Operation, 3rd Edn., 1981, McGraw Hill e,W.L., Smith, J.C. and P.Harriot, Unit Operations in Chemical 2	ppic distillation process, design of es of trays-plate and column hydrauli nn design Total Periods: 45 stems, 2006, McGraw Hill Internation Engineering, VIIth Edn., 2005, McGra
Program	Azeotropi heterogen extractive UNIT – V Design m and efficio Text Boo 1. Van Wi 2. Doherty Edn Reference 1. Holland 2 Treybal 3 McCabe Hill.	ic distillation and extractive distillation: separation of homogen neous azeotropes, selection of addition agents-design of azeotro e distillation process; Reactive Distillation and Case studies. V hethods: fractionation devices, bubble cap, sieve and other type ency- plate fractionation column design methods, packed colur oks: Yinkle, M., Distillation, 2nd ed. 1967, McGraw Hill publications y, M.F and Malone, M.F., Conceptual Design of Distillation sy re Books: d, Multi-component Distillation. First Edn., 1963 I,R.E.,Mass Transfer Operation, 3rd Edn., 1981, McGraw Hill e,W.L., Smith, J.C. and P.Harriot, Unit Operations in Chemical 2	ppic distillation process, design of es of trays-plate and column hydrauli nn design Total Periods: 45 stems, 2006, McGraw Hill Internation Engineering, VIIth Edn., 2005, McGra
Program	Azeotropi heterogen extractive UNIT – V Design m and efficio Text Boo 1. Van Wi 2. Doherty Edn Reference 1. Holland 2 Treybal 3 McCabe Hill.	ic distillation and extractive distillation: separation of homogen neous azeotropes, selection of addition agents-design of azeotro e distillation process; Reactive Distillation and Case studies. V hethods: fractionation devices, bubble cap, sieve and other type ency- plate fractionation column design methods, packed colur oks: Yinkle, M., Distillation, 2nd ed. 1967, McGraw Hill publications y, M.F and Malone, M.F., Conceptual Design of Distillation sy re Books: d, Multi-component Distillation. First Edn., 1963 I,R.E.,Mass Transfer Operation, 3rd Edn., 1981, McGraw Hill e,W.L., Smith, J.C. and P.Harriot, Unit Operations in Chemical 2	ppic distillation process, design of es of trays-plate and column hydrauli nn design Total Periods: 45 stems, 2006, McGraw Hill Internation Engineering, VIIth Edn., 2005, McGra
Course Program Outcomes Specific	Azeotropi heterogen extractive UNIT – V Design m and efficio Text Boo 1. Van Wi 2. Doherty Edn Reference 1. Holland 2 Treybal 3 McCabe Hill.	ic distillation and extractive distillation: separation of homogen neous azeotropes, selection of addition agents-design of azeotro e distillation process; Reactive Distillation and Case studies. V hethods: fractionation devices, bubble cap, sieve and other type ency- plate fractionation column design methods, packed colur oks: Yinkle, M., Distillation, 2nd ed. 1967, McGraw Hill publications y, M.F and Malone, M.F., Conceptual Design of Distillation sy re Books: d, Multi-component Distillation. First Edn., 1963 I,R.E.,Mass Transfer Operation, 3rd Edn., 1981, McGraw Hill e,W.L., Smith, J.C. and P.Harriot, Unit Operations in Chemical 2	ppic distillation process, design of es of trays-plate and column hydrauli nn design Total Periods: 45 stems, 2006, McGraw Hill Internation Engineering, VIIth Edn., 2005, McGra fill

CO1

	3	1	3	3	1	1	3	2	1	1	1	1	1	2	
CO4	1	3	3	2	2	1	2	1	3	3	1	2	1	1	
CO5	2	1	3	3	2	1	2	3	1	2	3	3	1	2	
CH1714						IV	L ELI			N			L	ΓΡ	
CII1/14					IG AN	DING	TKUN		AIIO	1				$\begin{array}{c c} \mathbf{I} & \mathbf{I} \\ \hline 0 & 0 \end{array}$	
OBJECTIVE The course is ai ➤ To impa		wledge	e on pi	ping te	chnolo	ogy and	d instru	ımenta	tion o	ı pipeli	nes.				
Course Outcor	nes (C	0)													
	derstar		ntrodu	ction.	applica	ations.	Piping								
	derstar								ure dro	р					
	derstar														
	derstar								lculati	on					
CO5 To un	derstar	nd the a	and pip	oing &	ınstrui	nentati	ion dia	gram							
UNIT – I	FU		MENT	ALS ()F PH	PING	ENGI	NEER	ING						9
Fabrication and	PI	PE HY velocit	DRA y and	ULICS pressu	re droj	o consi	ideratio							pe drav	ving
Pipe sizing basics, developed		f pipin	00												
	ment of	f pipin													9
basics, develop	ment of PL f plot j Stress	OT Pl plan fc analys	LAN or diffe is -Dif	ferent	types										
basics, develop UNIT – III Development o piping layout. 3 dynamic analys UNIT – IV	ment of PL f plot j Stress is, and PII	OT Pl plan fc analys flexib	LAN or diffe is -Dif ility ar SUPP	ferent alysis.	types	of stre	esses a	nd its							ilit tior
basics, develop UNIT – III Development o piping layout. S dynamic analys	ment of PL f plot j Stress is, and PII	OT Pl plan fc analys flexib	LAN or diffe is -Dif ility ar SUPP	ferent alysis.	types	of stre	esses a	nd its							ilit tior
basics, develop UNIT – III Development o piping layout. S dynamic analys UNIT – IV Different types	PL f plot j Stress is, and PII of supp	OT Pl plan fc analys: flexib: PING	LAN or diffe is -Dif ility ar SUPP sed on	ferent alysis. ORT requir	ement	of stre	esses a	nd its							ilit tior
basics, developm UNIT – III Development o piping layout. S dynamic analys UNIT – IV	PL f plot p Stress is, and PII of supp IN lements	OT Pl plan fc analys: flexib PING port ba STRU s; meas	LAN or diffe is -Dif ility ar SUPP sed on MEN suring o	ferent alysis. ORT requir FATIC devices	ement DN s , instru	of stre	esses a	nd its	impac	t on p	to proc	method	ds of o	gram (P	iilit tior
basics, development of piping layout. So dynamic analys UNIT – IV Different types UNIT – V Final Control El	PL f plot p Stress is, and PII of supp IN lements	OT Pl plan fc analys: flexib PING port ba STRU s; meas	LAN or diffe is -Dif ility ar SUPP sed on MEN suring o	ferent alysis. ORT requir FATIC devices	ement DN s , instru	of stre	esses a	nd its	impac	t on p	to proc	metho	ds of o	gram (P	tion
basics, development of piping layout. So dynamic analys UNIT – IV Different types UNIT – V Final Control El	PL f plot p Stress is, and PII of supp IN lements	OT Pl plan fc analys: flexib PING port ba STRU s; meas	LAN or diffe is -Dif ility ar SUPP sed on MEN suring o	ferent alysis. ORT requir FATIC devices	ement DN s , instru	of stre	esses a	nd its	impac	t on p	to proc	method	ds of o	gram (P	iilit tior

Course Outcomes							gram comes						Sp	gram ecific comes
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1	3	3	1	2	1	2	1	3	2	1	3	1	1
CO2	3	3	1	3	2	1	3	2	1	3	2	1	2	1
CO3	3	1	3	3	1	1	3	2	1	1	1	1	1	2
CO4	1	3	3	2	2	1	2	1	3	3	1	2	1	1
CO5	2	1	3	3	2	1	2	3	1	2	3	3	1	2
CH171	5				FOC	DD TE	CHNC	LOG	Y				LT	P
OBJECTIVE The course is a ≻ To ena	aimed	e stude	nts to l	earn to	design	n proce	essing e	quipm	ents fo	r Food	Indust	ries.		
CO4 To u	ts of fo Fo f food; G cocessir	nd the and the N OVI od indu OOD (quality ENER ng metl	concej concej ERVIH Istry; v CONS' y and n RAL El nods; c	ot and a ot of ut EW vorld f FITUE utritive	mechan ilizatio ood ne ENTS, e aspec EERIN ion and	nism of on of fc eds and QUAI ets; foo NG AS d prese	f presen pod pro d Indian LITY A d addit PECTS rvation	vative ducts n situa AND D ives; s S AND	tion. DERIV tandarc D PRO	ATIVI ls; dete	riorativ	ve fact	ors and t	heir
Preliminary pr UNIT – IV Preservation b and pasteuriza UNIT – V	y heat tion; fe	and co ermenta	old; deł ation a CTIO	nydratie nd pick N ANI	on; con ling; p D UTI	ncentra acking LISAT	tion; d metho TION (ds.)F FO	OD Pl	RODU	CTS			
Preliminary pr UNIT – IV Preservation b and pasteuriza	y heat tion; fe Pl pulses;	and co ermenta RODU	old; def ation an CTIO ables; f	nydrati nd pick N ANI Fruits; s	on; con ling; p D UTI spices;	ncentra acking LISAT fats an	tion; d metho TION (d oils;	ds.)F FO bakery	OD Pl	RODU ectione	CTS ry and	choco	late prod	ucts;
Preliminary pr UNIT – IV Preservation b and pasteuriza UNIT – V Cereal grains; soft and alcoho Text Books: 1. Heid J.L. Jo 2. Potter N.N., Reference Bo	y heat tion; fe pulses; olic bev slyn M , Food S	and co crmenta RODU vegeta verages .A., Fu Science	Id; deh ation an CTIO ables; f s; dairy ndame e, The	nydration nd pick N ANI Truits; s produ ntals o AVI pu	on; con ling; p D UTI spices; cts; me f Food ablishi	ncentra packing LISAT fats an eat; pou Proces ng Co.	tion; d metho TION (d oils; altry ar ssing O , West	ds.)F FO bakery d fish peratio	OD Pl <i>y</i> ; confe produce on, The 963.	RODU ectione ets.	CTS ry and ublishi	choco Fotal I ng Co	late prode Periods: ., West p	ucts; 45 ort 196
Preliminary pr UNIT – IV Preservation b and pasteuriza UNIT – V Cereal grains; soft and alcoho Text Books: 1. Heid J.L. Jo 2. Potter N.N.,	y heat tion; fe pulses; olic bev slyn M , Food S oks: .R., Fo	and co rmenta RODU vegeta verages .A., Fu Science od Pro	Id; deh ation an CTIO ables; f ables; f s; dairy ndame e, The cess En	nydration nd pick N ANI Truits; s produ entals o AVI pu ngineer	on; con ling; p D UTI pices; cts; me f Food ublishi	ncentra packing LISAT fats an eat; por Proces ng Co.	tion; d metho T ION (d oils; altry ar ssing O , Westp I publis	ds.)F FO bakery d fish peration port, 19 shing c	OD Pl <i>y</i> ; confe produce on, The 963.	RODU ectione ets.	CTS ry and ublishi	choco Fotal I ng Co	late prode Periods: ., West p	ucts; 45 ort 196

CO1	1	3	3	1	2	1	2	1	3	2	1	3	1	1
CO2	3	3	1	3	2	1	3	2	1	3	2	1	2	1
CO3	3	1	3	3	1	1	3	2	1	1	1	1	1	2
CO4	1	3	3	2	2	1	2	1	3	3	1	2	1	1
CO5	2	1	3	3	2	1	2	3	1	2	3	3	1	2

CH	1716	BIOCHEMICAL ENGINEERING	L	T	P	(
ODIEC			3	0	0	
OBJEC		1				
	rse is aime					
7	This cours	se mainly discusses the role of enzymes and microbes in biotechnology sector	Jrs.			
<u>C</u>	0-4	- (00)				
	Outcome					
CO1		stand the development and scope of biochemical engineering				
CO2		stand the modulation and regulation of enzyme activity		1 1		
CO3		stand the models for cellular growth unstructured, structured and cybernetic	moc	lels		
CO4		stand the determination of oxygen transfer rates, power requirements				
CO5	To under	stand the disruption-mechanical and non-mechanical methods				
						_
UNIT -		INTRODUCTION				
		nical processes with typical examples, comparing chemical and bioche				
		scope of biochemical engineering as a discipline. Industrially important micro	obial	strai	ns; tl	ne
		cture; cellular genetics.				
UNIT -	- II	KINETICS OF ENZYME ACTION				
		ne catalyzed reaction: the enzyme substrate complex and enzyme action,				
		me activity, types of inhibition. Immobilized enzyme technology: enzyme	e imr	nobi	lizati	0
Immobi	lized enzy	me kinetics: effect of external mass transfer resistance.				
UNIT -	- III	KINETICS OF MICROBIAL GROWTH				
Kinetics	s of cellula	r growth in batch and continuous culture, models for cellular growth unstru	cture	ed, st	ructu	re
and cyb	ernetic mo	odels, medium formulation. Thermal death kinetics of cells and spores, stoi	chior	metr	y of	ce
growth	and produce	ct formation, Design and analysis of biological reactors.				
UNIT -	- IV	TRANSPORT PHENOMENA				
Transpo	ort phenon	nena in bioprocess systems: Gas-liquid mass transfer in cellular systems,	dete	rmin	atior	1 (
oxygen	transfer ra	tes, power requirements for sparged and agitated vessels, scaling of mass tra	ansfe	r equ	lipm	en
heat trai	nsfer.			-	-	
UNIT -	- V	DOWN STREAM PROCESSING				
Down s	tream pro	cessing: Strategies to recover and purify products; separation of insoluble p	orodu	icts,	filtra	ti
		; cell disruption-mechanical and non-mechanical methods; separation of				
	•	ctions, membrane separation (dialysis, ultra filtration and reverse osmosis)		-		
		meation chromatography, electrophoresis, final steps in purification -cry				
drying.	0 1					
		Total 1	Perio	ods:	4	5
Text Bo	ooks:					
		gineering fundamentals by J.E.Bailey and D.F.Ollis, 2nd ed, 1986, McGraw	Hill			
		ineering by Michael L. Shuler and FikretKargi, 2nd edition, Pearson educati		•		
2. Diopi	occos Eng	meeting by michael 12. Shuler and Fiktetixargi, 2nd cutton, i carson cutcan	.011.			—

Reference Books:

Biochemical engineering by James M.Lee – Prentice-Hall-1992.
 Bioprocess engineering principles, Pauline M. Doran, Academic Press.

3	. Biochemical	l Engine	ering,	H.W.	Blanch and D.S. C	Clark, Marcel Dekker, 1997.

Course Outcomes					Pr	ogram	Outco	omes					Program Specific Outcomes		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	1	3	3	1	2	1	2	1	3	2	1	3	1	1	
CO2	3	3	1	3	2	1	3	2	1	3	2	1	2	1	
CO3	3	1	3	3	1	1	3	2	1	1	1	1	1	2	
CO4	1	3	3	2	2	1	2	1	3	3	1	2	1	1	
CO5	2	1	3	3	2	1	2	3	1	2	3	3	1	2	

GE1	.003	PROFESSIONAL ETHICS	L	Т	Р	С
			3	0	0	3
OBJEC	TIVE					
The cour	se is aim	led				
> '	Го create	awareness on professional ethics and human values				
		awareness on engineering ethics providing basic knowledge about engineering moral issues, inquiry and virtues.	ng et	hics,		
> '	Γo provie	de basic familiarity about engineers as responsible experimenters and codes of	f eth	ics		
		ate knowledge and exposure on safety, risk and rights of an employee				
> '	Го have a	an adequate knowledge about global issues in multi-national companies				
Course						
CO1	Define to develop	the dimensions or senses of engineering ethics and describe the various theori ment.	es o	f moi	al	
CO2		e the similarities and contrast of engineering experiments Vs scientific experi he code of ethics of various professional societies.	men	ts an	d to	
CO3	Underst	and significance of safety and risk assessment when developing engineering	prod	ucts.		
CO4	Underst	and the social responsibilities and intellectual property rights of engineers.	_			
CO5	Underst	and the process of how a multinational company works and to describe about	the	role	of	
	enginee	rs in computer ethics, environment ethics, and weapons development				
UNIT –		HUMAN VALUES				9
		nd Ethics; Integrity; Work ethics; Service learning; Civic virtue; Respect for				
		ng, Sharing, Honesty, Courage, Valuing time, Cooperation, Commitment,				
		acter; Spirituality; Introduction to Yoga and meditation for professional exce	ellen	ce ar	nd sti	res
manager						
UNIT –		ENGINEERING ETHICS				9
		eering Ethics' - Variety of moral issues, Types of inquiry, Moral dilemmas, M				
		y; Gilligan's theory; Consensus and Controversy; Models of professional role	s; Tl	neori	es ab	ou
0		-interest; Customs and Religion; Uses of Ethical Theories.				1
UNIT –		ENGINEERING AS SOCIAL EXPERIMENTATION				9
U	ring as E	xperimentation – Engineers as responsible Experimenters; Codes of Ethics; H	Bala	nced	Outl	00
on Law.						

Safety and Risk – Assessment of Safety and Risk, Risk Benefit Analysis and Reducing Risk; Respect for Authority; Collective Bargaining; Confidentiality; Conflicts of Interest; Occupational Crime; Professional Rights; Employee Rights; Intellectual Property Rights (IPR), Discrimination.

UNIT – V GLOBAL ISSUES

Multinational Corporations; Environmental Ethics; Computer Ethics; Weapons Development; Engineers as Managers – Consulting Engineers, Engineers as Expert Witnesses and Advisors; Moral Leadership; Code of Conduct; Corporate Social Responsibility.

Total Periods: 45

9

Text Books

1.Mike W. Martin and Roland Schinzinger, "Ethics in Engineering", Tata McGraw Hill, New Delhi, 2003 2.Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Hall of India, New Delhi, 2004.

Reference Books:

1. Charles B. Fleddermann, "Engineering Ethics", Pearson Prentice Hall, New Jersey, 2004.

2. Charles E. Harris, Michael S. Pritchard and Michael J. Rabins, "Engineering Ethics – Concepts and Cases", Cengage Learning, 2012.

3. John R Boatright, "Ethics and the Conduct of Business", Pearson Education, New Delhi, 8th edition, 2017. 4. Edmund G Seebauer and Robert L Barry, "Fundamentals of Ethics for Scientists and Engineers", Oxford University Press, Oxford, 2001.

5.Laura P. Hartman and Joe Desjardins, "Business Ethics: Decision Making for Personal Integrity and Social Responsibility" Mc Graw Hill education, India Pvt. Ltd, New Delhi, 2013.

6. World Community Service Centre, "Value Education", Vethathiri publications, Erode, 2011.

Course Outcomes					Pr	ogram	Outco	omes					Prog Spe Outo	gram cific comes
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1	2	3	2	2	3	2	3	2	2	3	2	1	1
CO2	1	2	3	2	2	3	2	3	2	2	3	2	1	1
CO3	1	2	3	2	2	3	2	3	2	2	3	2	1	1
CO4	1	2	3	2	2	3	2	3	2	2	3	2	1	1
CO5	1	2	3	2	2	3	2	3	2	2	3	2	1	1

PROFESSIONAL ELECTIVE V

CH	808	OPTIMIZATION OF CHEMICAL PROCESSES	L	Т	Р	С
			3	0	0	3
OBJEC	TIVE					
The cour	se is aime	ed				
\succ	Students v	vill gain knowledge about process modelling and optimization				
Course	Outcome	s (CO)				
CO1	To under	rstand the applications of optimization in chemical engineering				
CO2	To under	rstand the conditions for optimum; region elimination methods				
CO3	To under	rstand the search methods; indirect search methods				
CO4	To under	rstand the dynamic and integer programming				
CO5	To under	rstand the equipment design, resource allocation and inventory control.				
UNIT –	Ι	INTRODUCTION				9

Introduction to optimization; applications of optimization in chemical engineering; classification of optimization problems.

UNIT – II SINGLE VARIABLE OPTIMIZATION

Necessary and sufficient conditions for optimum; region elimination methods; interpolation methods; direct root methods.

 UNIT - III
 MULTIVARIABLE OPTIMIZATION WITHOUT AND WITH CONSTRAINTS
 9

Necessary and sufficient conditions for optimum; direct search methods; indirect search methods.

UNIT – IV OTHER OPTIMIZATION METHODS

Introduction to geometric, dynamic and integer programming and genetic algorithms.

UNIT – V APPLICATIONS OF OPTIMIZATION

Formulation of objective functions; fitting models to data; applications in fluid mechanics, heat transfer, mass transfer, reaction engineering, equipment design, resource allocation and inventory control.

Total Periods: 45

9

9

9

Text Books:

1. Rao, S. S., Engineering Optimization - Theory and Practice, Third Edition, John Wiley & Sons, New York, 1996.

2. Edgar, T.F., Himmelblau, D.M., "Optimisation of Chemical Processes ", McGraw-Hill Book Co., New York, 2003.

3. Reklaitis, G.V., Ravindran, A., Ragsdell, K.M. "Engineering Optimisation", John Wiley, New York, 1980

Course Outcomes					Pr	ogram	Outco	omes					Pro Spe Out	gram ecific comes
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1	3	3	1	2	1	2	1	3	2	1	3	1	1
CO2	3	3	1	3	2	1	3	2	1	3	2	1	2	1
CO3	3	1	3	3	1	1	3	2	1	1	1	1	1	2
CO4	1	3	3	2	2	1	2	1	3	3	1	2	1	1
CO5	2	1	3	3	2	1	2	3	1	2	3	3	1	2

CH1809	FERMENTATION ENGINEERING	L	Т	Р	С
		3	0	0	3
OBJECTIVE					

The course is aimed

To enable the students to understand the role of fermentation microorganisms and (bio) chemical activities and conversions that take place during fermentations, and their impact on quality.

Course	Outcomes (CO)
CO1	To understand the Microbial Enzymes – Microbial metabolites
CO2	To understand the Flow measurement and control
CO3	To understand the Different centrifuge cell description
CO4	To understand the chemical and biological – Aerobic process – Anaerobic treatment
CO5	To understand the Air sterilization – Heating and cooling – Recovery costs
UNIT –	I INTRODUCTION TO FERMENTATION PROCESSES
Microbia	al biomass - Microbial Enzymes - Microbial metabolites - Recombinant products - Transformation
Process -	- Microbial growth binetus - Isolation and preservation and improvement of industrially important micro
organist	n.

UNIT – II INSTRUMENTATION AND CONTROL

Measurement of process variables – Temperature and its control – Flow measurement and control – Gases and Liquids – Pressure measurement and control – Cenline analysis – Control System – 93 Combination of Control Systems – Computer application in termentation technology.

UNIT – III RECOVERY AND PURIFICATION OF FERMENTATIONPRODUCTS

Removal of Microbial cells – Foam Separation – Precipitation Filtration – Different Filtration process – Centifugation – Different centrifuge cell description – Different methods – Solvent recovery – Superfluid extraction – Chromatography – Membrane processes – Drying – Crystallization – Whole growth processing.

UNIT – IV EFFLUENT TREATMENT

Strength of fermentation effluent – Treatment and disposal – Treatment Processes – Physical, chemical and biological – Aerobic process – Anareobic treatment.

UNIT – V FERMENTATION ECONOMICS

Introduction – Isolation of micro organisms of industrial interest – Strain improvement – Market potential – Plant and equipment – Media – Air sterilization – Heating and cooling – Recovery costs.

Total Periods: 45

9

9

9

9

Text Books:

1. Principles of fermentation Technology P.Stanbury Buttuworth Hanman – 1999.

- 2. Fermentation and Biochemical Engineering Handbook C.C Haber. William Andrew II Edition 2007.
- 3. Bioprocess Engineering Hydersen B.K Nancy A.delaK.L.Nelsen Wiley Interscience, 1994.

Course Outcomes					Pr	ogram	Outco	omes					Prog Spe Outo	gram ecific comes
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1	3	3	1	2	1	2	1	3	2	1	3	1	1
CO2	3	3	1	3	2	1	3	2	1	3	2	1	2	1
CO3	3	1	3	3	1	1	3	2	1	1	1	1	1	2
CO4	1	3	3	2	2	1	2	1	3	3	1	2	1	1
CO5	2	1	3	3	2	1	2	3	1	2	3	3	1	2

СН	810 NUCLEAR ENGINEERING	L	Т	Р	C
		3	0	0	3
OBJEC	ΓΙVΕ				
The cou	rse is aimed				
\checkmark	Γo gain some fundamental knowledge about nuclear physics, nuclear reactor, nuclear	fuels	, read	ctors	
	and safe disposal of nuclear wastes.				
Course	Outcomes (CO)				
CO1	Ability to understand nuclear reaction process				

CO2 Able to gain knowledge on nuclear fuels

el of an a s. Nu tors: type: nuclear n nuclear n nuclear n nuclear nd its chan Pro- e isotopes ents - sep sents - sep Sat t safety-sa its dispos	ng of n nowled iclear j tom-Ec iclear i s of fas reactor iclear i s of fas reactor iclear i t fission racteris opertic and m aration afety an afety s sal-radi	uclear lge in s physic quivale reacto st breed st breed st breed reaction n and f stics-un es of ir ethods n of iso nd disp ystems	power safety a safety a sence of r ding re- ctor shi ons an fusion- ranium radia of iso otopes a s-chang	r plants and dis f mass eactors ielding d reac - radio n produ tope se of heav ges and	and en .Desig . Fusio tion m activit activit activit el - sep paratio yy elen	of nucle nergy-bi n and c on react aterial ty- chai and pur paration on princ nents.	ear fuel nding- onstruc ors. s n react ificatio n of react iples o s of ac	s radio ction o ions-cr n. Zirc actor I f isoto	f fast b ritical r onium produc pe sepa	reedi n nass ar , thoriu ts ration afor sat	g reacto nd comp im, bery - Separa	rs-heat osition llium. tion of i	transf -nucle
quiring kr Quiring kr Image: Number of the second secon	iclear j tom-Eo tom-Eo s of fas reactor iclear j fission racteris opertion and m aration fety an afety s sal-radi	Ige in s physic quivale reactor st breed st breed st breed st breed st breed reactor n and f stics-un es of in ethods n of iso nd disp ystems	safety a safety a ence of r ding re- tor shi ons an fusion- ranium ranium radia of iso topes oosal s-chan	f mass f mass ielding. d reac - radio n produ ted fue tope se of heav ges and	and en .Desig . Fusio tion m activit activit el - sep paratio vy elen	nergy-bi n and c on react aterial ty- chai and pur paration on princ nents.	nding- onstruc ors. s n react ificatio n of rea iples o s of ac	radio etion o ions-cr n. Zirc actor <u>I</u> f isoto	f fast b ritical r onium produc pe sepa	reedi n nass ar , thoriu ts ration afor sat	g reacto nd comp im, bery - Separa fetynucle	rs-heat osition llium. tion of i	raction transf -nucle isotop
Nu el of an a s. Nu tors: type: nuclear 1 Nu of nuclear nd its chan of nuclear nd its chan Pre e isotopes ents - sep Sat t safety-sa its dispos	iclear j tom-Ec iclear i s of fas reactor iclear i fission racteris opertic and m aration fety an afety s sal-radi	physic quivale reactor st breed st breed reactor reactor n and f stics-un es of ir ethods n of iso nd disp ystems	s ence of r ding re- tor shi ons an fusion- ranium ranium radia of iso topes oosal s-chan	f mass eactors ielding. d reac - radio n produ ted fue tope se of heav ges and	and en .Desig . Fusio tion m activit activit el - sep paratio vy elen l conse	nergy-bi n and c on react aterial ty- chai and pur paration on princ nents.	nding- onstruc ors. s n react ificatio n of rea iples o s of ac	radio etion o ions-cr n. Zirc actor <u>I</u> f isoto	f fast b ritical r onium produc pe sepa	reedi n nass ar , thoriu ts ration afor sat	g reacto nd comp im, bery - Separa fetynucle	rs-heat osition llium. tion of i	raction transf -nucle isotop
el of an a s. Nu tors: type: nuclear n nuclear n nuclear n nuclear nd its chan Pro- e isotopes ents - sep sents - sep Sat t safety-sa its dispos	tom-Ec s of fas reactor clear i fission racteris opertic and m aration fety an afety system sal-radi	quivale reactor st breed res- reac reaction n and f stics-un es of ir ethods n of iso nd disp ystems	r ding re- tor shi ons an fusion- ranium radia of iso topes o oosal s-chan	eactors ielding, d reac - radio n produ ted fue tope se of heav ges and	.Desig . Fusio tion m activit action a el - sep eparatio vy elen	n and c on react aterial ty- chai and pur paration on princon nents.	onstruc ors. s n react ificatio n of rea iples o s of ac	ions-cr n. Zirc actor J f isotoj	f fast b ritical r onium produc pe sepa	reedi n nass ar , thoriu ts ration afor sat	g reacto nd comp im, bery - Separa fetynucle	rs-heat osition- llium. tion of i	raction transf -nucle isotop
s. Nu tors: type: nuclear 1 Nu of nuclear nd its char e isotopes ents - sep Sat t safety-sa its dispos Cannoly,	s of fas reactor clear 1 rission racteris opertion and m aration fety an afety system al-radi	reactor st breed s- reaction n and f stics-un es of in ethods n of iso nd disp ystems	r ding re- tor shi ons an fusion- ranium ranium rradia of iso otopes oosal s-chan	eactors ielding, d reac - radio n produ ted fue tope se of heav ges and	.Desig . Fusio tion m activit action a el - sep eparatio vy elen	n and c on react aterial ty- chai and pur oaration on princ nents.	onstruc ors. s n react ificatio n of rea iples o s of ac	ions-cr n. Zirc actor J f isotoj	f fast b ritical r onium produc pe sepa	reedi n nass ar , thoriu ts ration afor sat	g reacto nd comp im, bery - Separa fetynucle	rs-heat osition- llium. tion of i	transf -nucle isotop
Nu tors: type: nuclear i Nu of nuclear ad its chan Pre- e isotopes ents - sep Sat t safety-sa its dispose Cannoly,	s of fas reactor clear i fission racteris opertid and m aration fety an afety s sal-radi	st breed reaction n and f stics-un es of in ethods n of iso nd disp ystems	ding re tor shi ons an fusion- ranium radia of iso topes osal s-chan	ielding d reac - radio n produ ted fue tope se of heav ges and	. Fusio tion m activit action a el - sep paratio vy elen	on react aterial ty- chai and pur oaration on princ nents.	ors. s n react ificatio n of rea iples o s of ac	ions-cr n. Zirc actor J f isotoj cident-	ritical r onium oroduc pe sepa criteria	nass ar , thoriu ts ration afor sation.	nd comp im, bery - Separa fetynucle	osition- llium. tion of i	-nucle isotop
tors: type: nuclear i Nu of nuclear nd its chai e isotopes ents - sep Sai t safety-sa its dispos	s of fas reactor clear i fission racteris opertid and m aration fety an afety s sal-radi	st breed reaction n and f stics-un es of in ethods n of iso nd disp ystems	ding re tor shi ons an fusion- ranium radia of iso topes osal s-chan	ielding d reac - radio n produ ted fue tope se of heav ges and	. Fusio tion m activit action a el - sep paratio vy elen	on react aterial ty- chai and pur oaration on princ nents.	ors. s n react ificatio n of rea iples o s of ac	ions-cr n. Zirc actor J f isotoj cident-	ritical r onium oroduc pe sepa criteria	nass ar , thoriu ts ration afor sation.	nd comp im, bery - Separa fetynucle	osition- llium. tion of i	-nucle isotop
nuclear 1 Nu of nuclear nd its chan e isotopes ents - sep Sai t safety-sa its dispos	reactor clear i fission racteris opertic and m aration fety an afety system sal-radi	s- reaction reaction n and f stics-un es of in ethods n of iso nd disp ystems	tor shi ons an fusion- ranium radia of iso topes oosal s-chan	ielding d reac - radio n produ ted fue tope se of heav ges and	. Fusio tion m activit action a el - sep paratio vy elen	on react aterial ty- chai and pur oaration on princ nents.	ors. s n react ificatio n of rea iples o s of ac	ions-cr n. Zirc actor J f isotoj cident-	ritical r onium oroduc pe sepa criteria	nass ar , thoriu ts ration afor sation.	nd comp im, bery - Separa fetynucle	osition- llium. tion of i	-nucle isotop
Nu of nuclear nd its char Pre- e isotopes ents - sep Sat t safety-sa its dispos	clear i fission racteris opertion and maration fety an afety system sal-radi	reaction n and f stics-un es of ir ethods n of iso nd disp ystems	fusion fusion ranium radia of iso otopes bosal s-chan	d reac - radio n produ ted fue tope se of heav ges and	tion m activit action a el - sep paration vy elen l conse	aterial ty- chai and pur paration on princ nents.	s n react ificatio n of rea iples o s of ac	n. Zirc actor <u>p</u> f isoto cident-	onium oroduc pe sepa	thoriu ts ration afor sat	- Separa	tion of i	isotop ste-typ
nd its chan Pro- e isotopes ents - sep Sai t safety-sa its dispos Cannoly,	opertic and maration aration afety an afety system sal-radi	stics-un es of ir ethods n of iso nd disp ystems	ranium radia of iso otopes oosal s-chang	ted fue tope se of heav ges and	el - sep paratic vy elen l conse	and pur paration on princ nents.	ificatio n of rea iples o s of ac	n. Zirc actor <u>p</u> f isoto cident-	onium oroduc pe sepa	thoriu ts ration afor sat	- Separa	tion of i	isotop ste-typ
nd its chan Pro- e isotopes ents - sep Sai t safety-sa its dispos Cannoly,	opertic and maration aration afety an afety system sal-radi	stics-un es of ir ethods n of iso nd disp ystems	ranium radia of iso otopes oosal s-chang	ted fue tope se of heav ges and	el - sep paratic vy elen l conse	and pur paration on princ nents.	ificatio n of rea iples o s of ac	n. Zirc actor <u>p</u> f isoto cident-	onium oroduc pe sepa	thoriu ts ration afor sat	- Separa	tion of i	isotop ste-typ
e isotopes ents - sep Sai t safety-sa its dispos	and maration aration fety an afety system sal-radi	ethods 1 of iso 1d disp ystems	of iso otopes oosal s-chang	tope se of heav ges and	paration vy elen	on princ nents. equence	s of ac	f isoto cident-	oe sepa	ration	fetynucle	ear was	ste-typ
e isotopes ents - sep Sai t safety-sa its dispos	and maration aration fety an afety system sal-radi	ethods 1 of iso 1d disp ystems	of iso otopes oosal s-chang	tope se of heav ges and	paration vy elen	on princ nents. equence	s of ac	f isoto cident-	oe sepa	ration	fetynucle	ear was	ste-typ
ents - sep Sai t safety-sa its dispos	aration fety an afety system sal-radi	n of iso nd disp ystems	otopes oosal s-chang	of heav	vy elen l conse	nents. equence	s of ac	cident-	criteria	afor sat	fetynucle	ear was	ste-typ
Sat t safety-sa its dispos	fety an afety sy sal-radi	nd disp ystems	oosal s-chang	ges and	l conse	equence	s of ac nweap	cident- ons pro	criteria	ion.	-		
t safety-sa its dispos	afety sy sal-radi	ystems	-chang	ges and s and t	l conse heir pr	equence eventio	s of ac nweap	cident- ons pro	criteria	ion.	-		
its dispos	sal-radi	iation h	hazard	ges and t	heir pr	eventio	s of ac nweap	ons pro	oliferat	ion.	-		
Cannoly,			nazaru			eventio	nweap		merat		otal Pe	riods:	45
	"Fund									1		104.5.	Т
	"Fund												
	"Fund												
	i unu	amenta	als of I	Nuclea	r Engi	neering	" 1978	, John	Wiley.				
., and 110										re publ	lishing, 1	New Y	ork.
ES:													
4.El., "Po	ower Pl	lant Te	chnol	ogy" 19	984, M	lc Grav	7						
													gram
				Pr	ogran	n Outco	mes					-	
		2	4	-		-	0	0	10	11	10		-
_			-	-	-							_	2
				-									1
-	1		-	2 1	1	_		1	1	1	-	2 1	1 2
				2				1				1	<u>ک</u>
													2
	1	5	5	4		4	5	1	4	5	5	1	
			· · ·	ENER	GYT	ECHN	OLOG	Y			I	T	P
I								-					0
E												,	<u> </u>
)												
ents will g	gain kr	nowled	lge abo	out diff	erent e	energy	sources						
omes (C	0)												
		-				~ ·							
			-										
				g, solai	r distil	lation,	solar r	efriger	ation, s	solar di	ryers, sc	olar por	ıd, sol
understar	id the I	Energy	v mana	igemen	t impo	rtance,	duties	and rea	sponsit	oilities.			
	I 1 1 3 3 1 2 E s aimed to ents will § comes (C) understar understar understar understar understar understar understar	Les: Power P 1 2 1 3 3 1 1 3 3 1 1 3 2 1 E aimed to ents will gain knows comes (CO) understand the understand the understand the understand the understand the understand the	Les: Power Plant Term 1 2 3 1 3 3 3 3 1 3 1 3 1 3 3 2 1 3 2 1 3 E aimed to ents will gain knowled comes (CO) understand the genera understand the solar or understand the solar or rmal power generation understand the hydrol the hydrol	Les: Power Plant Technol 1 2 3 4 1 3 3 1 3 3 1 3 3 3 1 3 3 1 3 1 3 3 2 2 1 3 3 2 2 1 3 3 2 2 1 3 3 2 2 1 3 3 3 E saimed to ents will gain knowledge abore comes (CO) understand the general class understand the solar cooling rmal power generation understand the solar cooling rmal power generation understand the hydrolysis &	Les: Prover Plant Technology" 1 1 2 3 4 5 1 3 3 1 2 3 3 1 3 2 3 1 3 3 1 1 3 3 1 2 3 1 3 2 2 2 1 3 3 2 2 1 3 3 2 2 1 3 3 2 2 1 3 3 2 E aimed to Enter Enter aimed to ents will gain knowledge about diff comes (CO) understand the general classification understand the solar cooling, solar rmal power generation understand the hydrolysis & hydrolysis	Les: Program 1 2 3 4 5 6 1 3 3 1 2 1 3 3 1 3 2 1 3 1 3 2 1 1 3 3 1 1 1 1 3 3 2 1 1 3 3 2 1 1 3 3 2 1 2 1 3 3 2 1 2 1 3 3 2 1 ENERGY T E s aimed to ents will gain knowledge about different of comes (CO) understand the general classification of enunderstand the solar cooling, solar distil rmal power generation understand the solar cooling, solar distil rmal power generation understand the hydrolysis & hydrogenation	Description Program Outcom 1 2 3 4 5 6 7 1 3 3 1 2 1 2 3 3 1 3 2 1 3 3 1 3 3 1 1 3 1 3 3 1 1 3 1 1 3 1 3 3 2 1 2 1 2 1 2 2 1 3 3 2 1 2 1 2 2 1 3 3 2 1 2 1 2 2 1 3 3 2 1 2 1 2 2 1 3 3 2 1 2 1 2 ENERGY TECHNO Entermode to entermode to 2 1 2 understand the general classification of energy und	ZES:M.El., "Power Plant Technology" 1984, Mc GrawProgram Outcomes12345678133121213313213231321321332212121332123ENERGY TECHNOLOGEcomes (CO)understand the general classification of energy understand the folar cooling, solar distillation, solar remal power generation understand the hydrolysis & hydrogenation, solvolysis,	ZES:M.El., "Power Plant Technology" 1984, Mc GrawProgram Outcomes123456789133121213331213213313213213132132113321213ENERGY TECHNOLOGYEcomes (CO)understand the general classification of energyunderstand the general classification of energyunderstand the solar cooling, solar distillation, solar refrigerationunderstand the hydrolysis & hydrogenation, solvolysis, biocru	ES:Program Outcomes 123456789101331212132331213213233132132111332212133213321213321332121332133212312 ENERGY TECHNOLOGYENERGY TECHNOLOGY understand the general classification of energy understand the general classification of energy understand the general classification of energy understand the solar cooling, solar distillation, solar refrigeration, sunderstand the solar cooling, solar distillation, solar refrigeration, ssssunderstand the hydrolysis & hydrogenation, solvolysis, biocrudessss	ES: Program Outcomes 1 2 3 4 5 6 7 8 9 10 11 1 3 3 1 2 1 2 1 3 2 1 3 3 1 2 1 2 1 3 2 1 3 3 1 3 2 1 3 2 1 3 2 3 1 3 3 1 1 3 2 1 1 1 1 1 3 3 2 1 2 1 3 3 1	ES: Program Outcomes 1 2 3 4 5 6 7 8 9 10 11 12 1 3 3 1 2 1 2 1 3 2 1 3 3 3 1 2 1 3 2 1 3 2 1 3 3 1 3 2 1 3 2 1 <td>M.EL, "Power Plant Technology" 1984, Mc Graw Program Outcomes Program Outcomes 1 2 3 4 5 6 7 8 9 10 11 12 1 1 3 3 1 2 1 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1</td>	M.EL, "Power Plant Technology" 1984, Mc Graw Program Outcomes Program Outcomes 1 2 3 4 5 6 7 8 9 10 11 12 1 1 3 3 1 2 1 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1

9

UNIT – I

ENERGY

Introduction to energy – Global energy scene – Indian energy scene - Units of energy, conversion factors, general classification of energy, energy crisis, energy alternatives.

UNIT – II **CONVENTIONAL ENERGY**

Conventional energy resources, Thermal, hydel and nuclear reactors, thermal, hydel and nuclear power plants, efficiency, merits and demerits of the above power plants, combustion processes, fluidized bed combustion.

UNIT – III **NON-CONVENTIONAL ENERGY**

Solar energy, solar thermal systems, flat plate collectors, focusing collectors, solar water heating, solar cooling, solar distillation, solar refrigeration, solar dryers, solar pond, solar thermal power generation, solar energy application in India, energy plantations. Wind energy, types of windmills, types of wind rotors, Darrieus rotor and Gravian rotor, wind electric power generation, wind power in India, economics of wind farm, ocean wave energy conversion, ocean thermal energy conversion, tidal energy conversion, geothermal energy.

UNIT – IV **BIOMASS ENERGY**

Biomass origin - Resources - Biomass estimation. Thermochemical conversion - Biological conversion, Chemical conversion – Hydrolysis & hydrogenation, solvolysis, biocrude, biodiesel power generation gasifier, biogas, integrated gasification.

UNIT – V **ENERGY CONSERVATION**

Energy conservation - Act; Energy management importance, duties and responsibilities; Energy audit – Types methodology, reports, instruments. Benchmalcing and energy performance, material and energy balance, thermal energy management.

Text Books:

1. Rao, S. and Parulekar, B.B., Energy Technology, Khanna Publishers, 2005.

2. Rai, G.D., Non-conventional Energy Sources, Khanna Publishers, New Delhi, 1984.

3. Nagpal, G.R., Power Plant Engineering, Khanna Publishers, 2008.

4. Energy Management, Paul W.O'Callaghan McGraw – Hill, 1993

Reference Books:

1. Nejat Vezirog, Alternate Energy Sources, IT, McGraw Hill, New York.

2. El. Wakil, Power Plant Technology, Tata McGraw Hill, New York, 2002.

3. Sukhatme. S.P., Solar Enery - Thermal Collection and Storage, Tata McGraw hill, New Delhi, 1981.

4. Handbook of Energy Audit by 7th edition Albert Thumann, P.E., C.E.M & William J Younger 100 C.E.M, Faiment Press 2008

Course Outcomes					Pro	ogram	Outco	omes					Program Specific Outcomes		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	1	3	3	1	2	1	2	1	3	2	1	3	1	1	
CO2	3	3	1	3	2	1	3	2	1	3	2	1	2	1	
CO3	3	1	3	3	1	1	3	2	1	1	1	1	1	2	
CO4	1	3	3	2	2	1	2	1	3	3	1	2	1	1	
CO5	2	1	3	3	2	1	2	3	1	2	3	3	1	2	

PROFESSIONAL ELECTIVE

VI **CH1812** FERTILIZER TECHNOLOGY L C 3 0 0 3

OBJECTIVE

The course is aimed

> Students will gain knowledge about petroleum refining process and production of petrochemical products

Course Outcomes (CO)

CO1 To understand the Synthetic fertilizers

9

9

9

9

Total Periods: 45

ſ	CO2	To understand the Nitrogenous Fertilizers
	CO3	To understand Toyo-Koatsu total recycle process
Γ	CO4	To understand the Potassium Fertilizers
	CO5	To understand the Miscellaneous Fertilizer and Bio Fertilizers

9

9

9

9

Introduction to Chemical Fertilizers: Chemical inorganic Fertilizers and Organic manures. Types of fertilizers: Mixed, complex and Granulated, plant nutrients.

UNIT – II

Processes for Raw Materials: Processes for manufacture of ammonia, nitric acid, phosphoric acid and sulphuric acid.

UNIT – III

Nitrogenous and Potassium Fertilizers: Processes for urea and di-ammonium phosphate. Recovery of Potassium salts, processes for ammonium chloride and ammonium sulphate.

UNIT – IV

Complex Fertilizers: Processes for nitro - phosphates and complex NPK fertilizers liquid fertilizers

UNIT – V

Phosphatic Fertilizers and Indian Fertilizer Industry: Single and Triple Superphosphate, biofertilizer. Fertilizer Industry in India

Total Periods: 45

Reference Books:

1. Strelzoff, "Technology and Manufacture of Ammonia", 2nd Edn., Wiley, 1981.

2. L. J. Carpentire, "New Developments in Phosphate Fertilizer Technology", Elsevier, 1971.

- 3. "Handbook on Fertilizer Technology", Fertilizer Association of India, Near JNU, New Delhi 1992.
- 4. V. Slack, "Phosphoric Acid", 2nd Edn., Marcell Dekkar, 1968

Course Outcomes					Pr	ogram	Outco	omes					Program Specific Outcomes		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	1	3	3	1	2	1	2	1	3	2	1	3	1	1	
CO2	3	3	1	3	2	1	3	2	1	3	2	1	2	1	
CO3	3	1	3	3	1	1	3	2	1	1	1	1	1	2	
CO4	1	3	3	2	2	1	2	1	3	3	1	2	1	1	
CO5	2	1	3	3	2	1	2	3	1	2	3	3	1	2	

CH1813

PULP AND PAPER TECHNOLOGY

 L
 T
 P
 C

 3
 0
 0
 3

OBJECTIVE

The course is aimed

- Gaining Knowledge of pulp & paper industry, mill Operations, products, process variables, equipment, and terminology.
- Increasing knowledge of how the Pulp &Paper processes affect product properties, in order to improve product quality and troubleshoot variations in quality.

Course Outcomes (CO)

CO1 Understand the basic concepts of pulp and paper technology to produce paper

CO2 Annly reactions and unit operations steps to manufacture nuln

CO3	Understand the operation of equipments employed in pulp and paper industry
CO4	Apply waste disposal techniques in pulp and paper industry.
CO5	Perform various chemical tests to monitor quality of raw material, output quality and influent/effluent
	of pulp and paper industry

UNIT – I	INTRODUCTION
Introduction to pu	lp and paper technology – Wood haves dry – Wood as a raw material.
UNIT – II	WOODYARD OPERATION
Woodyard operation	ion - Mechanical pulping – Chemical pulping – Secondary fibre pulp processing.
UNIT – III	PAPER MACHINE
Paper Machine we	et and addition paper machine dry and operation – Paper machine - Wet and operation

UNIT – IV	PA	APER	AND I	PAPEI	RBOA	RD								9	
Paper and pape	erboard	l frame	s and p	oroduct	ts – Su	rface t	reatme	nts – F	inishin	g opera	ation-	End uses	s.		
UNIT – V	PI	ROPE	RTIES	S AND	TEST	TING (OF PU	LP AN	D PA	PER				9	
Properties and	Testin	g of pu	lp and	paper	Proces	s contr	ol – Q	uality a	assurar	nce – W	later ai	nd air po	llution	control.	
											T	'otal Pei	riods:	45	
1. Monica ER	Monica	a, Gora	n Gell	erstcdt	Gunna	ar Heni	nksson	De Gn	eyter,	Pulp ar	nd pape	er chemis	stry and	d	
Technology, 20	009.														
2. Rao, M.Gop		ing, M	arshall	, Dryd	en's ou	tlines of	of Cher	nical T	echno	logy, 3	rd Edit	ion, Affi	ilated E	East-	
West Press Pvt															
Reference Boo															
1. Biermann, C					-	0	.	0.							
2Metcalf & Eddy, Wastewater Engineering, Treatment, Dispose and Reuse, Inc. IV EDN, 2002.															
	Austin, George T., Shreves' Chemical Process Industries, 5th Edition, McGraw-Hill Education India Pvt. Ltd														
- New Delhi. 4. Bhatia, S.C. Environmental Pollution and Control in Chemical Process Industries Second Edition 2011.															
													1011 20	11.	
	5. Trivedi, R.K., Pollution Management in Industries, Environmental Publication, Karad, India														
Course						Pro	oram								
Outcomes		Program Outcomes										Specific Outcomes			
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	1	3	3	1	2	1	2	1	3	2	1	3	1	1	
CO2	3	3	1	3	2	1	3	2	1	3	2	1	2	1	
CO3	3	1	3	3	1	1	3	2	1	1	1	1	1	2	
CO4	1	3	3	2	2	1	2	1	3	3	1	2	1	1	
CO5	2	1	3	3	2	1	2	3	1	2	3	3	1	2	

CH1814	
--------	--

MIXING THEORY AND PRACTICE

 T
 P
 C

 0
 0
 3

L

3

9

9

9

OBJECTIVE

The course is aimed

- > To teach the students about the importance of mixing in chemical process industries.
- > To teach the students about the heat and mass transfer coefficient and its reaction.
- > To provide basic knowledge about the Non Newtonian Liquids.

Course Outcomes (CO)

CO1 Understand the Basics of Chemical Process Industries

CC	02	Able to	select the equipment for mixing	
CC)3	Able to	design the equipment for mixing	
CC	04	Underst	and heat and mass transfer aspects in mixing	
CC)5	Underst	and mixing in non Newtonian liquids	
UNI	T –	Ι		9
Exa	mple	s of proc	esses signifying importance of mixing - Goodness of mixing: Qualification - Significance	e of
dime	ensic	onless gro	oups - dimensional analysis - power number correlation - Expressions for NRe, NFr, NWe,	NPr
from	n the	ir definiti	ons as ratios applied to resisting forces - analogy between drag coefficient and power num	ber
UNI	[T –	II		9
Effe	ct of	f mixing	on chemical reactions - introduction -batch reactor and CSTR comparison - Residence t	time
			ing concepts and models - RTD functions J(8) and J'(8) - Average residence time from RT	
		·	ise measurements - Interpretation of response data by mixing models - Imperfect mixing	g in
			nsient analysis of chemical reactors in series.	
UNI				9
			notion by mixing - mixing and overall heat transfer coefficient - Heat transfer correlation	
			acketed vessels - transient analysis of heat transfer - isothermal heating or cooling mediu	
			oling medium - external heat exchanger - isothermal/non isothermal heating/cooling mediu	
	•		n for heat transfer in mixing vessels - Stirred tank scale-up heat transfer consideration - So	cale
up o	of bat	tch and ot	ther reactors.	

UNIT – IV

Mixing and mass transfer - introduction - Liquid liquid extraction - equipments - batch - continuous differential - Triangular representation of concentration - phase equilibrium diagram - Material balance for stage wise contact - counter current continuous and differential contact - problems - Interfacial phenomena - drop size distribution - coalescence - breakage - emulsion - surfactant - Mass transfer coefficient - two film concept - mass transfer modeling - Correlation for mass transfer coefficient - stage efficiency.

UNIT – V

Non-Newtonian liquids mixing - introduction, pseudoplastic, dilatant, Bingham plastic liquid, - thixotropic and rheopectic liquids - shear rate - shear stress behaviour - apparent viscosity - Power curve for non-Newtonian liquids - Viscometry - shear in stirred tanks - Shear in stirred tanks related to shear in pipes, apparent viscosity in pipe-line flow and stirred tanks - discussion of experimental work literature - Reynolds number modification - Practical application of Non-Newtonian mixing.

Text Books:

Total Periods: 45

9

9

1. Holland and Chapman, Liquid Mixing and processing in Stirred Tanks, Reinhold Publishing Co-operation, 1966, New York and London.

Uhl and Gray, Mixing theory and practice, Vol.1 and II, 1967, Academic Press, New York and London.
 Reference Books:
 Shinii Nagata Mixing Principles and Applications, 1975, Holted Press, Tokyo

Course Outcomes		Program Outcomes														
	1	2	3	4	5	6	7	8	9	10	11	12	1	2		
CO1	1	3	3	1	2	1	2	1	3	2	1	3	1	1		
CO2	3	3	1	3	2	1	3	2	1	3	2	1	2	1		
CO3	3	1	3	3	1	1	3	2	1	1	1	1	1	2		
CO4	1	3	3	2	2	1	2	1	3	3	1	2	1	1		
CO5	2	1	3	3	2	1	2	3	1	2	3	3	1	2		

PETROLEUM REFINING AND PETROCHEMICALS CH1815

L	Т	Р	С
3	0	0	3

9

9

9

9

OBJECTIVE

The course is aimed

Students will gain knowledge about petroleum refining process and production of petrochemical products

Course Outcomes (CO)

CO1 To understand the Testing of Petroleum Products

To understand the Cracking, Thermal Cracking CO₂

To understand the Removal of Sulphur Compounds CO3

To understand the Catalytic Reforming of Petroleum Feed Stocks CO4

To understand the Production of Petrochemicals CO5

UNIT – I

Origin, Formation and Evaluation of Crude Oil. Testing of Petroleum Products. Refining of Petroleum Atmospheric and Vaccum Distillation.

UNIT – II

Cracking, Thermal Cracking, Vis-breaking, Catalytic Cracking (FCC), Hydro Cracking, Coking and Air Blowing of Bitumen.

UNIT – III

Treatment Techniques: Removal of Sulphur Compounds in all Petroleum Fractions to improve performance, Solvent Treatment Processes, Dewaxing, Clay Treatment and Hydrofining.

UNIT – IV

Cracking of Naphtha and Feed stock gas for the production of Ethylene, Propylene, Isobutylene and Butadiene. Production of Acetylene from Methane, Catalytic Reforming of Petroleum Feed Stocks and Extraction of Aromatics. 9

UNIT – V

Production of Petrochemicals like Dimethyl Terephathalate (DMT), Ethylene Glycol, Synthetic Glycerine, Linear Alkyl Benzene (LAB), Acrylonitrile, Methyl Methacrylate (MMA), Vinyl Acetate Monomer, Phthalic Anhydride, Maleic Anhydride, Phenol and Acetone, Methanol, Formaldehyde, Acetaldehyde, Pentaerythritol and Production of Carbon Black.

> **Total Periods:** 45

Text Books:

1. Nelson, W. L., "Petroleum Refinery Engineering", 4th Edn., McGraw Hill, New York, 1985.

2. Bhaskara Rao, B. K., "Modern Petroleum Refining Processes", 2nd Edn., Oxford and IBH Publishing Company, New Delhi, 1990.

3. Bhaskara Rao, B. K. "A Text on Petrochemicals", 1st Edn., Khanna Publishers, New Delhi, 1987.

- 4. Wiseman. P., Petrochemicals, UMIST Series in Science and Technology.
- 5. H. Steiner, Introduction to petrochemicals Industry', Pergamon, 1961.

	Course Program Outcomes Outcomes												Sp	Program Specific Outcomes	
		1	2	3	4	5	6	7	8	9	10	11	12	1	2
C	01	1	3	3	1	2	1	2	1	3	2	1	3	1	1
C	02	3	3	1	3	2	1	3	2	1	3	2	1	2	1
C	03	3	1	3	3	1	1	3	2	1	1	1	1	1	2
C	04	1	3	3	2	2	1	2	1	3	3	1	2	1	1
C	05	2	1	3	3	2	1	2	3	1	2	3	3	1	2

OPEN ELECTIVE I

OCE103 ENVIRONMENTAL IMPACT ASSESSMENT L Т Р С 3 0 0 3 **OBJECTIVE** The course is aimed > To impart knowledge on Environmental management and Environmental Impact Assessment. **Course Outcomes (CO)** CO1 carry out scoping and screening of developmental projects for environmental and social assessments explain different methodologies for environmental impact prediction and assessment CO2 CO3 plan environmental impact assessments and environmental management plans evaluate environmental impact assessment reports CO4 CO5 To understand the Membrane Applications. UNIT – I **INTRODUCTION** 9 Impact of development projects-EIA Notifications-Urbanization-Meaning- Activities involved- Effects on environment-Environmental Impact Assessment(EIA)-Environmental Impact Statement(EIS) -UNIT – II **METHODOLOGIES** 9 Methods of EIA-Checklists-Matrices-Networks-Cost-benefit analysis-Analysis of alternatives - Uncertainty in EIA UNIT – III PREDICTION ANDASSESSMENT 9 Assessment of Impact on land, water, air, social & cultural activities and on flora& Fauna- Mathematical models-Public participation-SIA Judgment authorities-Rapid EIA ENVIRONMENTAL MANAGEMENT PLAN UNIT – IV 9 Plan for mitigation of adverse impact on environment-Options for mitigation of impact on water, air, land and on flora& fauna- Addressing the issues related to the Project Affected People. $\mathbf{UNIT} - \mathbf{V}$ **CASESTUDIES** 9 EIA for infrastructure projects-Dams-Highways-Multi-storey Buildings-Water Supply and Drainage Projects-Waste water treatment plants, STP Total Periods: 45 Text Books: Canter, R.L., "Environmental Impact Assessment", McGraw-Hill Inc., New Delhi, 1996. 1. Richard K. Morgan., "Environmental Impact Assessment" Kluwer Academic Publications, London, 2. 2002 **Reference Books:** 1. John G. Rauand David C Hooten (Ed).,"Environmental Impact Analysis Handbook", McGraw-Hill BookCompany, 1990. 2. "Environmental Assessment Sourcebook", Vol.I, II&III. The World Bank, Washington, D.C., 1991. 3. Judith Petts, "Handbook of Environmental Impact Assessment Vol.I&II", Blackwell Science, 1999.

Course Outcomes					Pr	ogram	Outco	omes					Spe	gram ecific comes
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1	2	1	2	2	1	2	1	2	3	2	1	2	1
CO2	1	1	2	2	1	2	1	2	1	2	1	1	2	1
CO3	1	3	2	2	1	2	1	1	1	2	1	2	1	1
CO4	2	2	1	2	1	2	1	1	2	2	1	2	1	1
CO5	3	1	2	1	3	1	2	1	1	2	1	1	2	1

		<u> </u>	P	U
	3	0	0	3
OBJECTIVE				
The course is aimed				
1 0	and draw flowcharts in a language independent manner.			
	nodular, efficient and readable C programs			
	n creating and using Arrays of the C data types.		_	
To describe the techniq	ues for creating program modules in C using functions and recurs	sive fur	nctior	18.
Course Outcomes (CO)				
CO1 Write, compile and de	bug programs in C language.			
CO2 Use different data typ	es in a computer program.			
CO3 Design programs invo	lving decision structures, loops, arrays and functions			
CO4 Identify the difference	e between call by value and call by reference			
CO5 Use pointers to unders	stand the dynamics of memory, Create and perform different file of	operati	ons	
UNIT – I				9
Introduction to the C Language	e - Algorithm, Pseudo code, Flow chart, Background, C Progra	ms, Id	entifi	ers,
	ants, Input / Output, Operators(Arithmetic, relational, logical,	, bitwi	se et	ic.),
Expressions, Precedence and A	ssociatively, Expression Evaluation, Type conversions.			
UNIT – II				9
	ts(making decisions) – if and switch statements, Repetition state	ments		
	s, Loop examples, other statements related to looping $-$ break, c			
Simple C Program examples	, hop shamples, other succinents related to rooping break, e	ommu	, 50	,
UNIT – III				9
	actured Programming, Functions- basics, user defined functions,	inter	funct	ion
	call by reference), Standard functions. Storage classes-auto,			

UNIT – IV

Arrays– Basic concepts, one-dimensional arrays, two – dimensional arrays, multidimensional arrays, C programming examples Pointers – Introduction (Basic Concepts), pointers to pointers, compatibility, Pointer Applications, Arrays and Pointers, Pointer Arithmetic, memory allocation functions, array of pointers, pointers to void, pointers to functions, command –line arguments, Introduction to structures and unions.

UNIT – V

Strings – Concepts, C Strings, String Input / Output functions, string manipulation functions, string /data conversion. Input and Output – Concept of a file, streams, text files and binary files, Differences between text and binary files, State of a file, Opening and Closing files, file input / output functions (standard library input / output functions for files), file status functions (error handling),Positioning functions.

Total Periods: 45

Text Books:

1. Computer Science: A Structured Programming Approach Using C, B.A.Forouzan and R.F. Gilberg, Third Edition, Cengage Learning.

2. The C Programming Language by Brian Kernighan and Dennis Ritchie 2nd edition

Reference Books:

1. Let Us C Yashavant kanetkar BPB.

2. Absolute beginner's guide to C, Greg M. Perry, Edition 2, Publisher: Sams Pub., 1994.

3. Computer Programming and Data Structures by E Balagurusamy, Tata McGraw Hill.

Course Outcomes														Program Specific Outcomes	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	1	2	1	2	2	1	2	1	2	3	2	1	2	1	
CO2	1	1	2	2	1	2	1	2	1	2	1	1	2	1	
CO3	1	3	2	2	1	2	1	1	1	2	1	2	1	1	
CO4	2	2	1	2	1	2	1	1	2	2	1	2	1	1	
CO5	3	1	2	1	3	1	2	1	1	2	1	1	2	1	

OEE105	SOLAR ENERGY UTILIZATION	L	Т	Р	С
		3	0	0	3

OBJECTIVE

The course is aimed

> To learn the fundamental concepts of solar energy and radiation collecting instruments

➤ To study about approaches for the storage of solar energy along with solar energy collectors

Course Outcomes (CO)

CO1	To understand the History of solar energy utilization - Solar radiation and modeling

CO2 To understand the Types – Nuclear waste

CO3 To understand the Materials for flat plate collector and their properties

CO4 To understand the solar pond - solar thermal power generation

CO5 To understand the Thermal Storage - Electrical Storage

UNIT – I SOLAR RADIATION

History of solar energy utilization - Solar radiation and modeling - Empirical equations for predicting the availability of solar radiation – Measurement of global, direct and diffuse radiation – Radiation computations on inclined surfaces – Angstrom's turbidity - Solar chart - Standard radiation scale.

UNIT – II	SOLAR RADIATION MEASUREMENT AND ESTIMATION	9
Measurement of s	olar radiation - Solar energy measuring instruments – Pyranometer – Pyrheliometer –	
Sunshine recorder	- Estimation of average solar radiation - Ratio of beam and total radiation on tilted surface	e of
that on horizontal	surface.	

	UNIT – III S	SOLAR COLLECTORS
--	--------------	------------------

Flat plate collector - Materials for flat plate collector and their properties - Thermal Analysis of Flat- plate Collector and Useful Heat Gained by the fluid - fin efficiency - collector efficiency factor - Heat Removal Factor - Focusing collectors - Types and applications of focusing collectors

UNIT – IV	SOLAR ENERGY APPLICATIONS	9
	orinciple of operation of solar cooker - solar air heater - solar water heater - solar distillation thermal power generation – Greenhouse - Solar PV system.	1 -

UNIT – V	STORAGE OF SOLAR ENERGY	9
Types of Energy S	Storage - Thermal Storage - Electrical Storage - Chemical Storage - hydro-storage	

Total Periods: 45

Reference Books:

- 1. Rai, G.D., Solar Energy Utilization, Khanna Publishers, N. Delhi, 2010.
- 2. Sukhatme S.P., Solar Energy, Tata McGraw Hills P Co., 3rd Edition, 2008.
- 3. Jean Smith Jensen, Applied solar energy research: a directory of world activities and bibliography of significant literature, Volume2, Association for Applied Solar Energy, Stanford Research Institute, 2009.
- 4. Duffie, J.A., an
- 5. Jui Sheng Hsieh, Solar Energy Engineering, Prentice- Hall, 2007.
- 6. Garg, H.P., Treatise on Solar Energy, John Willey & Sons, 2006.
- 7. 7. Anna Mani, S Rangarajan: Handbook of Solar Radiation Data for India, Allied Publishers, 2006.

Course Outcomes		Program Outcomes												
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1	2	1	2	2	1	2	1	2	3	2	1	2	1
CO2	1	1	2	2	1	2	1	2	1	2	1	1	2	1
CO3	1	3	2	2	1	2	1	1	1	2	1	2	1	1
CO4	2	2	1	2	1	2	1	1	2	2	1	2	1	1
CO5	3	1	2	1	3	1	2	1	1	2	1	1	2	1

OBT101INDUSTRIAL BIOTECHNOLOGYLTPC3003

OBJECTIVE

The course is aimed

> To motivate students to excel in research and to practice the technologies in the field of Industrial biotechnology. To provide students with a solid understanding of Biotechnology fundamentals and applications required to solve real life problems. To provide students with an academic environment that is aware of professional excellence and leadership through interaction with professional bodies

Course	Outcomes (CO)
CO1	Design, perform experiments, analyze and interpret data for investigating complex problems in
	Biotechnology, Engineering and related fields.
CO2	Decide and apply appropriate tools and techniques in biotechnological manipulation.
CO3	Justify societal, health, safety and legal issues
CO4	Understand his responsibilities in biotechnological engineering practices

		l the ne view ne						al solu	tions o	n envi	ronmer	nt and so	cietal	context
τιλίτη τ		TTDI	7887487		E CE	r T								
UNIT – I Cell, structure		VERV					ruotio	colle	atructi	1 mol or	conizat	tion and	funct	9
intracellular o														
Peroxisomes a				itueie	us, m	toenon	uria, O	oigi ot	Juies, 1		ines, L	ndopidsn	ine reu	curum,
UNIT – II				GRO	WTH:	PURE	CULT	URE	TECH	NIQU	ES			9
Enrichment c										-		ns and p	ohotosy	nthetic
microorganism	ns. The	e defini	ition of	f grow	th, mat	hemati	ical exp	pressio	n of gr	owth,	Growth	n curve,	availab	ility of
oxygen, cultur														
Media formul														
influencing th			various	carbo	n and	nitroge	n sour	ces, vi	tamins,	miner	als, pr	ecursors	and an	ntifoam
agents. Import		трн. ІАNA (CEME		FWA	TF								9
Management			-				and Sc	lid W	aste A	naeroh	ic dige	estion B	iostim	-
Bioaugmentat											ie uige	5000, D	1051111	ilution,
UNIT – IV		ioreme					,			,				9
Definition, co	nstrain	its and	priorit	ies of	Bioren	nediatio	on, Tyj	bes of	biorem	ediatio	on, In-s	itu and	Ex-situ	
bioremediation	n techr	iques,	Factors	s affect	ing bio	remed	iation.	Bioren	nediatio	on of H	ydroca	rbons. L	ignocel	lulosic
Compounds.														
UNIT – V		IOEN												9
Bio energy: E	Energy	and B	iomass	Produ	ction f	rom w	astes,	biofuel	s, bio 1	hydrog	en and	biomas	s. Bior	nining:
Bioleaching, r	nonitoi	ring of	polluta	nts, mi	crobia	lly enha	anced c	11 reco	very, n	ncrobi		otal Peri	oda	45
											1	otal Feri	ous:	45
Text Books:														
1. Molec	ular B	iology	of cell.	Albert	s. B et	al. Dev	velopm	ental B	Biology	SF G	ilbert. S	Sinauer A	ssocia	tes Inc.
2. AVN														
Reference Bo														
1. Enviro	nment	al Biote	echnolo	ogy - A	llan St	agg.								
														gram
Course					Pr	ogram	Outco	mes					Spe	
Outcomes													Out	comes
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1	2	1	2	2	1	2	1	2	3	2	1	2	1
CO2	1	1	2	2	1	2	1	2	1	2	1	1	2	1
CO3	1	3	2	2	1	2	1	1	1	2	1	2	1	1
CO4	2	2	1	2	1	2	1	1	2	2	1	2	1	1
CO5	3	1	2	1	3	1	2	1	1	2	1	1	2	1
	~	-		-	-	-		-	-		-		_	-
OBT102			F	IAZAI	RDOU	S WAS	STE M	ANAC	EME	NT		L	Τ	P C
												3	0	0 3
OBJECTIVE														
The course is a														
Under	stand t	he type	e, natur	e and t	reatme	nt of ha	azardou	is wast	es.					

CO1	To understand Hazardous Solid Waste	
CO2	To introduce students to basic concepts of planning and management of hazardous waste managem	nent.
CO3	The content involves importance of necessity of hazardous waste management	
CO4	To understand Physico-Chemical Treatment: Incineration	
C05	To understand the Hazard analysis.	
UNIT	-I INTRODUCTION	9
Hazard	lous waste definition- Regulatory aspects of Hazardous Waste Management in India – Sources,	
	terization, categories - Analysis of hazardous waste -Physical and biological routes of transpor	t of
	ous substances	
UNIT	- II HAZARDOUS WASTES MANAGEMENT	9
	ng, collection, storage and transport- TSDF concept -Hazardous waste treatment technologies-Phys	
	cal and thermal treatment of hazardous waste-Solidification- Chemical fixation-Encapsulation-Pyro	
	cineration-Biological Treatment of Hazardous Waste, Hazardous waste landfills-Site selections-de	
	eration-HW reduction- Recycling and reuse-Hazardous Site remediation - onsite and offsite Techniq	<u> </u>
UNIT		9
	dical waste-Definition- Regulatory aspects of Biomedical Waste. Sources-Classification- Waste	
	ng and Collection-Segregation and labeling- Treatment - autoclaving, Incineration, Chemical	
	ng and Collection–Segregation and labeling- Treatment – autoclaving, Incineration, Chemical ection - ,disposal. Infection control Practices.	
Disinfe	ection - ,disposal. Infection control Practices.	
Disinfe UNIT	ection - ,disposal. Infection control Practices. - IV RADIOACTIVE WASTE MANAGEMENT	9
Disinfe UNIT Radioa	ection - ,disposal. Infection control Practices. - IV RADIOACTIVE WASTE MANAGEMENT active waste: Definition–Measurement of Radiation -Sources-Effects -Low level and high level radioaction	tive
Disinfe UNIT Radioa wastes	ection - ,disposal. Infection control Practices. - IV RADIOACTIVE WASTE MANAGEMENT active waste: Definition–Measurement of Radiation -Sources-Effects -Low level and high level radioactor - Transuranic Waste-and their management–Uranium Mine and Tailings, Characterization – Treatment	tive
Disinfe UNIT Radioa wastes	ection - ,disposal. Infection control Practices. - IV RADIOACTIVE WASTE MANAGEMENT active waste: Definition–Measurement of Radiation -Sources-Effects -Low level and high level radioaction	tive
Disinfe UNIT Radioa wastes Contro	ection - ,disposal. Infection control Practices. - IV RADIOACTIVE WASTE MANAGEMENT active waste: Definition–Measurement of Radiation -Sources-Effects -Low level and high level radioace - Transuranic Waste-and their management–Uranium Mine and Tailings, Characterization – Treatment of - Radiation standard by ICRP and AERB.	tive and
Disinfe UNIT Radioa wastes Contro UNIT	- IV RADIOACTIVE WASTE MANAGEMENT active waste: Definition-Measurement of Radiation -Sources-Effects -Low level and high level radioac - Transuranic Waste-and their management-Uranium Mine and Tailings, Characterization – Treatment ol - Radiation standard by ICRP and AERB. - V E-WASTE MANAGEMENT	and
Disinfe UNIT Radioa wastes Contro UNIT Regula	- IV RADIOACTIVE WASTE MANAGEMENT active waste: Definition-Measurement of Radiation -Sources-Effects -Low level and high level radioac - Transuranic Waste-and their management-Uranium Mine and Tailings, Characterization – Treatment al - Radiation standard by ICRP and AERB. - V E-WASTE MANAGEMENT atory aspects of E-l Waste management, Waste characteristics- Generation Collection - Material	ztive and 9 zrial
Disinfe UNIT Radioa wastes Contro UNIT Regula	ection - ,disposal. Infection control Practices. - IV RADIOACTIVE WASTE MANAGEMENT active waste: Definition-Measurement of Radiation -Sources-Effects -Low level and high level radioac - Transuranic Waste-and their management-Uranium Mine and Tailings, Characterization – Treatment - Radiation standard by ICRP and AERB. - V E-WASTE MANAGEMENT atory aspects of E-1 Waste management, Waste characteristics- Generation Collection - Mater osition-Transport Treatment and disposal. Recycling and Recovery – intergraded e-waste management	tive and g rial
Disinfe UNIT Radioa wastes Contro UNIT Regula Compo	ection - ,disposal. Infection control Practices. - IV RADIOACTIVE WASTE MANAGEMENT active waste: Definition—Measurement of Radiation -Sources-Effects -Low level and high level radioace - Transuranic Waste-and their management—Uranium Mine and Tailings, Characterization – Treatment ol - Radiation standard by ICRP and AERB. - V E-WASTE MANAGEMENT atory aspects of E-1 Waste management, Waste characteristics- Generation— Collection - Mater osition-Transport—Treatment and disposal. Recycling and Recovery – intergraded e-waste management Total Periods: Action	ztive and
Disinfe UNIT Radioa wastes Contro UNIT Regula Compo	ection - ,disposal. Infection control Practices. - IV RADIOACTIVE WASTE MANAGEMENT active waste: Definition-Measurement of Radiation -Sources-Effects -Low level and high level radioace - Transuranic Waste-and their management-Uranium Mine and Tailings, Characterization - Treatment of - Radiation standard by ICRP and AERB. - V E-WASTE MANAGEMENT atory aspects of E-1 Waste management, Waste characteristics- Generation Collection - Material cosition-Transport Treatment and disposal. Recycling and Recovery - intergraded e-waste management Books: Gooks:	tive and 9 rial
Disinfe UNIT Radioa wastes Contro UNIT Regula Compo Text B 1.	ection - ,disposal. Infection control Practices. - IV RADIOACTIVE WASTE MANAGEMENT active waste: Definition-Measurement of Radiation -Sources-Effects -Low level and high level radioace - Transuranic Waste-and their management-Uranium Mine and Tailings, Characterization - Treatment - Radiation standard by ICRP and AERB. - V E-WASTE MANAGEMENT attory aspects of E-l Waste management, Waste characteristics- Generation Collection - Mater position-Transport- Treatment and disposal. Recycling and Recovery - intergraded e-waste management Gooks: Hazardous waste management CharlesA.Wentz.Second edition 1995.McGraw Hill nternational.	erial
Disinfe UNIT Radioa wastes Contro UNIT Regula Compo Text B 1.	ection - ,disposal. Infection control Practices. -IV RADIOACTIVE WASTE MANAGEMENT active waste: Definition-Measurement of Radiation -Sources-Effects -Low level and high level radioac -Transuranic Waste-and their management-Uranium Mine and Tailings, Characterization - Treatment al - Radiation standard by ICRP and AERB. -V E-WASTE MANAGEMENT atory aspects of E-1 Waste management, Waste characteristics- Generation Collection - Mater osition-Transport- Treatment and disposal. Recycling and Recovery - intergraded e-waste management Gooks: Hazardous waste management Charles A. Wentz. Second edition 1995. McGraw Hill International. Hazardous waste management Michael D. La Gerga, PhilipL Buckingham, Jeffrey C. Evans, Second edition 1995. McGraw Hill nternational.	erial
Disinfe UNIT Radioa wastes Contro UNIT Regula Compo Text B 1. 2.	ection - ,disposal. Infection control Practices. -IV RADIOACTIVE WASTE MANAGEMENT active waste: Definition-Measurement of Radiation -Sources-Effects -Low level and high level radioace -Transuranic Waste-and their management-Uranium Mine and Tailings, Characterization – Treatment al - Radiation standard by ICRP and AERB. -V E-WASTE MANAGEMENT attory aspects of E-l Waste management, Waste characteristics- Generation Collection - Mater cosition-Transport- Treatment and disposal. Recycling and Recovery - intergraded e-waste management Gooks: Hazardous waste management CharlesA.Wentz.Second edition 1995.McGraw Hill nternational. Hazardous waste management Michael D. La Gerga, PhilipL Buckingham, Jeffrey C. Evans, Second edition 2010.Waveland Press.	erial
Disinfe UNIT Radioa wastes Contro UNIT Regula Compo Text B 1. 2. 3.	ection - ,disposal. Infection control Practices. - IV RADIOACTIVE WASTE MANAGEMENT active waste: Definition-Measurement of Radiation -Sources-Effects -Low level and high level radioace. - Transuranic Waste-and their management-Uranium Mine and Tailings, Characterization - Treatment of - Radiation standard by ICRP and AERB. - V E-WASTE MANAGEMENT attory aspects of E-1 Waste management, Waste characteristics- Generation Collection - Mater Distion-Transport- Treatment and disposal. Recycling and Recovery - intergraded e-waste management Distion-Transport- Treatment and disposal. Recycling and Recovery - intergraded e-waste management Distion-Transport- Treatment and Disposal. Recycling and Recovery - intergraded e-waste management Distion-Transport- Treatment and Disposal. Recycling and Recovery - intergraded e-waste management Distion-Transport- Treatment and Disposal. Recycling and Recovery - intergraded e-waste management Disposal. Books: Hazardous waste management Charles A. Wentz. Second edition 1995. McGraw Hill International. Hazardous waste management Michael D. La Gerga, PhilipL Buckingham, Jeffrey C. Evans, Second edition 2010. Waveland Press. Criteria for hazardous waste landfills-CPCBguidelines 2000	erial
Disinfe UNIT Radioa wastes Contro UNIT Regula Compo Text B 1. 2. 3. Refere	ection - ,disposal. Infection control Practices. -IV RADIOACTIVE WASTE MANAGEMENT active waste: Definition-Measurement of Radiation -Sources-Effects -Low level and high level radioace. -Transuranic Waste- and their management-Uranium Mine and Tailings, Characterization - Treatment of - Radiation standard by ICRP and AERB. -V E-WASTE MANAGEMENT atory aspects of E-I Waste management, Waste characteristics- Generation Collection - Mater Distion-Transport Treatment and disposal. Recycling and Recovery - intergraded e-waste management CharlesA.Wentz.Second edition 1995.McGraw Hill nternational. Hazardous waste management Michael D. La Gerga, PhilipL Buckingham, Jeffrey C. Evans, See edition 2010.Waveland Press. Criteria for hazardous waste landfillsCPCBguidelines2000 ence Books: -	gerial ent 45
Disinfe UNIT Radioa wastes Contro UNIT Regula Compo Text B 1. 2. 3. Refere	ection - ,disposal. Infection control Practices. - IV RADIOACTIVE WASTE MANAGEMENT active waste: Definition-Measurement of Radiation -Sources-Effects -Low level and high level radioace. - Transuranic Waste-and their management-Uranium Mine and Tailings, Characterization - Treatment of - Radiation standard by ICRP and AERB. - V E-WASTE MANAGEMENT attory aspects of E-1 Waste management, Waste characteristics- Generation Collection - Mater Distion-Transport- Treatment and disposal. Recycling and Recovery - intergraded e-waste management Distion-Transport- Treatment and disposal. Recycling and Recovery - intergraded e-waste management Distion-Transport- Treatment and Disposal. Recycling and Recovery - intergraded e-waste management Distion-Transport- Treatment and Disposal. Recycling and Recovery - intergraded e-waste management Distion-Transport- Treatment and Disposal. Recycling and Recovery - intergraded e-waste management Disposal. Books: Hazardous waste management Charles A. Wentz. Second edition 1995. McGraw Hill International. Hazardous waste management Michael D. La Gerga, PhilipL Buckingham, Jeffrey C. Evans, Second edition 2010. Waveland Press. Criteria for hazardous waste landfills-CPCBguidelines 2000	gerial ent 45
Disinfe UNIT Radioa wastes Contro UNIT Regula Compo Text B 1. 2. 3. Refere 1.	ection - ,disposal. Infection control Practices. -IV RADIOACTIVE WASTE MANAGEMENT active waste: Definition-Measurement of Radiation -Sources-Effects -Low level and high level radioad -Transuranic Waste-and their management-Uranium Mine and Tailings, Characterization - Treatment al - Radiation standard by ICRP and AERB. -V E-WASTE MANAGEMENT atory aspects of E-l Waste management, Waste characteristics- Generation Collection - Mate osition-Transport- Treatment and disposal. Recycling and Recovery - intergraded e-waste management Books: Hazardous waste management Charles A.Wentz.Second edition 1995.McGraw Hill nternational. Hazardous waste management Michael D. La Gerga, PhilipL Buckingham, Jeffrey C. Evans, Sec edition 2010.Waveland Press. Criteria for hazardous waste landfills-CPCBguidelines2000 ence Books: Basic Hazardous waste management, "William C.Blackman.Jr", Third Edition, 2001, Lewis Publis	9 erial ent 45
Disinfe UNIT Radioa wastes Contro UNIT Regula Compo Text B 1. 2. 3. Refere 1. 2.	ection - ,disposal. Infection control Practices. - IV RADIOACTIVE WASTE MANAGEMENT Interview waste: Definition—Measurement of Radiation -Sources-Effects -Low level and high level radioace - Transuranic Waste- and their management—Uranium Mine and Tailings, Characterization — Treatment oll - Radiation standard by ICRP and AERB. - V E-WASTE MANAGEMENT tory aspects of E-1 Waste management, Waste characteristics- Generation— Collection - Matter ostion-Transport— Treatment and disposal. Recycling and Recovery — intergraded e-waste management Basic Management Charles A. Wentz. Second edition 1995. McGraw Hill International. Hazardous waste management Michael D. La Gerga, PhilipL Buckingham, Jeffrey C. Evans, Second edition 2010. Waveland Press. Criteria for hazardous waste landfills—CPCBguidelines2000 ence Books: Basic Hazardous waste management, "William C.Blackman.Jr", Third Edition, 2001, Lewis Publis, Integrated solidwaste management George Techobanoglous, Hilary Theisen & Sammuel A.Vigil.	9 erial ent 45
Disinfe UNIT Radioa wastes Contro UNIT Regula Compo Text B 1. 2. 3. Refere 1. 2. 3.	ection - ,disposal. Infection control Practices. - IV RADIOACTIVE WASTE MANAGEMENT ictive waste: Definition—Measurement of Radiation -Sources-Effects -Low level and high level radioad - Transuranic Waste-and their management—Uranium Mine and Tailings, Characterization – Treatment oll - Radiation standard by ICRP and AERB. - V E-WASTE MANAGEMENT tory aspects of E-1 Waste management, Waste characteristics- Generation— Collection - Mate ostion-Transport—Treatment and disposal. Recycling and Recovery – intergraded e-waste management Basic Hazardous waste management Charles A. Wentz. Second edition 1995. McGraw Hill nternational. Hazardous waste management Michael D. La Gerga, PhilipL Buckingham, Jeffrey C. Evans, See edition 2010. Waveland Press. Criteria for hazardous waste landfills—CPCBguidelines 2000 ence Books: Basic Hazardous waste management, "William C.Blackman.Jr", Third Edition, 2001, Lewis Publis, Integrated solidwaste management George Techobanoglous, Hilary Theisen & Sammuel A. Vigil. Criteria for hazardous waste landfills—CPCB guidelines 2000.	9 erial ent 45 hers
Disinfe UNIT Radioa wastes Contro UNIT Regula Compo Text B 1. 2. 3. Refere 1. 2.	ection - ,disposal. Infection control Practices. -IV RADIOACTIVE WASTE MANAGEMENT active waste: Definition-Measurement of Radiation -Sources-Effects -Low level and high level radioad -Transuranic Waste-and their management-Uranium Mine and Tailings, Characterization - Treatment al - Radiation standard by ICRP and AERB. -V E-WASTE MANAGEMENT tory aspects of E-1 Waste management, Waste characteristics- Generation Collection - Mate osition-Transport- Treatment and disposal. Recycling and Recovery - intergraded e-waste management Total Periods: Gooks:	9 erial ent 45 hers
Disinfe UNIT Radioa wastes Contro UNIT Regula Compo Text B 1. 2. 3. Refere 1. 2. 3.	ection - ,disposal. Infection control Practices. - IV RADIOACTIVE WASTE MANAGEMENT ictive waste: Definition—Measurement of Radiation -Sources-Effects -Low level and high level radioad - Transuranic Waste-and their management—Uranium Mine and Tailings, Characterization – Treatment oll - Radiation standard by ICRP and AERB. - V E-WASTE MANAGEMENT tory aspects of E-1 Waste management, Waste characteristics- Generation— Collection - Mate ostion-Transport—Treatment and disposal. Recycling and Recovery – intergraded e-waste management Basic Hazardous waste management Charles A. Wentz. Second edition 1995. McGraw Hill nternational. Hazardous waste management Michael D. La Gerga, PhilipL Buckingham, Jeffrey C. Evans, See edition 2010. Waveland Press. Criteria for hazardous waste landfills—CPCBguidelines 2000 ence Books: Basic Hazardous waste management, "William C.Blackman.Jr", Third Edition, 2001, Lewis Publis, Integrated solidwaste management George Techobanoglous, Hilary Theisen & Sammuel A. Vigil. Criteria for hazardous waste landfills—CPCB guidelines 2000.	9 erial ent 45 hers

Course Outcomes	Program Outcomes S Ou						Program Outcomes												
	1	2	3	4	5	6	7	8	9	10	11	12	1	2					
CO1	1	2	1	2	2	1	2	1	2	3	2	1	2	1					
CO2	1	1	2	2	1	2	1	2	1	2	1	1	2	1					
CO3	1	3	2	2	1	2	1	1	1	2	1	2	1	1					
CO4	2	2	1	2	1	2	1	1	2	2	1	2	1	1					
CO5	3	1	2	1	3	1	2	1	1	2	1	1	2	1					

ENERGY CONSERVATION AND MANAGEMENT **OEE106**

Т Р С 0 0

3

9

9

9

9

L

3

OBJECTIVE

The course is aimed

Understand and analyse the energy data of industries

Course	Outcomes	(CO)

CO1 the students can able to analyse the energy data of indu	ıstries
--	---------

To understand the energy pricing, energy CO2

- CO3 Can carry out energy accounting and balancing
- Conduct energy audit and suggest methodologies for energy savings and Utilize the available resources CO4 in optimal ways

CO5 Can suggest methodologies for energy savings

UNIT – I **INTRODUCTION**

Energy - Power - Past & Present scenario of World; National Energy consumption Data - Environmental aspects associated with energy utilization – Energy Auditing: Need, Types, Methodology and Barriers. Role of Energy Managers. Instruments for energy auditing

UNIT – II **ELECTRICAL SYSTEMS**

Components of EB billing - HT and LT supply, Transformers, Cable Sizing, Concept of Capacitors, Power Factor Improvement, Harmonics, Electric Motors - Motor Efficiency Computation, Energy Efficient Motors, Illumination - Lux, Lumens, Types of lighting, Efficacy, LED Lighting and scope of Encon in Illumination. UNIT – III THERMAL SYSTEMS 9

Stoichiometry, Boilers, Furnaces and Thermic Fluid Heaters - Efficiency computation and encon measures. Steam: Distribution &U sage: Steam Traps, Condensate Recovery, Flash Steam Utilization, Insulators & Refractories

ENERGY CONSERVATION IN MAJOR UTILITIES UNIT-IV

Pumps, Fans, Blowers, Compressed Air Systems, Refrigeration and Air Conditioning Systems - Cooling Towers – D.G. sets

ECONOMICS UNIT – V

Energy Economics - Discount Rate, Payback Period, Internal Rate of Return, Net Present Value, Life Cycle Costing –ESCO concept

> **Total Periods:** 45

Text Books:

1. Energy Manager Training Manual (4 Volumes) available at www.energymanagertraining.com, a website administered by Bureau of Energy Efficiency (BEE), a statutory body under Ministry of Power, Government of India.2004.

Reference Books:

- 1. Witte L.C., Schmidt P.S., Brown D.R, "Industrial Energy Management and Utilisation" Hemisphere Publ, Washington, 1988.
- 2. Callaghn, P.W. "Design and Management for Energy Conservation", Pergamon Press, Oxford, 1981.
- 3. Dryden. I.G.C., "The Efficient Use of Energy" Butterworths, London, 1982
- 4. Murphy. W.R. and G. Mc KAY "Energy Management" Butterworths, London 1987.

Course Outcomes					Pr	ogram	Outco	omes					Program Specific Outcomes		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	1	2	1	2	2	1	2	1	2	3	2	1	2	1	
CO2	1	1	2	2	1	2	1	2	1	2	1	1	2	1	
CO3	1	3	2	2	1	2	1	1	1	2	1	2	1	1	
CO4	2	2	1	2	1	2	1	1	2	2	1	2	1	1	
CO5	3	1	2	1	3	1	2	1	1	2	1	1	2	1	

OPEN ELECTIVE II

OBT	C103	FUEL CELL CHEMISTRY	L	Т	Р	C
			3	0	0	3
OBJEC	ГIVE					
The cour	5 0 15 4 1111					
	Γo create	awareness about alternate clean fuel available.				
	Го famili	arize the students with the concepts and chemistry of fuel cell				
Course (
CO1		s will be aware of alternate energy sources and its importance of it.				
CO2		rstand the process analysis and selection				
CO3	To unde	rstand the chemical unit process in water treatment				
CO4		rstand the principle of biological treatment.				
CO5	To unde	rstand the filtration, Membrane and ion exchanger				
UNIT –	Ι	INTRODUCTION				9
Overview	w of fuel	cells: Low and high temperature fuel cells; Fuel cell thermodynamics - heat,	worl	K		
potential	s, predict	ion of reversible voltage, fuel cell efficiency.				
UNIT –	II	FUEL CELL KINETICS				•
Fuel cell	reaction	kinetics - electrode kinetics, overvoltage, Tafel equation, charge transfer rea	ction	, exc	hang	e
currents,	electro c	atalysis - design, activation kinetics, Fuel cell charge and mass transport - flo	ow fi	eld,		
		ode and electrolyte.				
UNIT –	III	CHARACTERIZATION TECHNIQUES				
		rization - in-situ and ex-situ characterization techniques, i-V curve, frequenc			e	
		modeling and system integration: - 1D model – analytical solution and CFE) mod	lels.		
UNIT –	IV	RENEWABLE SOURCES				Ģ
Balance	of plant;	Hydrogen production from renewable sources and storage; safety issues, cos	t exp	ectati	ion a	nd
life cycle	e analysis	of fuel cells.	•			

UNIT – V APPLICATIONS OF FUEL CELL

Fuel cell power plants: fuel processor, fuel cell power section (fuel cell stack), power conditioner; automotive applications, portable applications

Total Periods: 45

9

Text Books:

- 1. Gregor Hoogers, "Fuel Cell Technology Handbook", CRC Press, 2003.
- 2. R.P. O'Hayre, S. Cha, W. Colella, F.B. Prinz, "Fuel Cell Fundamentals", Wiley, 2006.
- 3. A. J.Bard, L. R. Faulkner, "Electrochemical Methods", Wiley, 2004

REFERENCES

- 1. S. Basu, "Fuel Cell Science and Technology", Springer, 2007.
- 2. H. Liu, "Principles of Fuel Cells", Taylor & Francis, 2006.

Course Outcomes	8													ogram becific tcomes
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1	2	1	2	2	1	2	1	2	3	2	1	2	1
CO2	1	1	2	2	1	2	1	2	1	2	1	1	2	1
CO3	1	3	2	2	1	2	1	1	1	2	1	2	1	1
CO4	2	2	1	2	1	2	1	1	2	2	1	2	1	1
CO5	3	1	2	1	3	1	2	1	1	2	1	1	2	1

RENEWA	ABLE ENERGY SOURCES
--------	---------------------

 T
 P
 C

 0
 0
 3

L

3

OBJECTIVE

OEE102

The course is aimed

- > To explain concept of various forms of renewable energy
- To outline division aspects and utilization of renewable energy sources for both domestics and industrial applications and to analysis the environmental and cost economics of using renewable energy sources compared to fossil fuels.

Course	Outcomes (CO)										
CO1	Understanding of commercial energy and renewable energy sources										
CO2	Knowledge in working principle of various energy systems										
CO3	Capability to do basic design of renewable energy systems										
CO4	Students will be able to calculate and use overall heat transfer coefficients in designing heat exchange	ers									
CO5	The course provides the student with knowledge about heat transfer with phase change (boiling ar condensation) and evaporation	nd									
UNIT -	- I INTRODUCTION TO ENERGY	9									
Indian l	Energy Scenario – Types & Forms of Energy - Primary / Secondary Energy Sources – Energy										
Conserv	vation - Need - EC Act 2003 : Salient Features - Energy Intensive Industries - Barriers -Roles	&									
Respon	sibility of Energy Managers – Energy Auditing : Preliminary & Detailed - Benchmarking.										
UNIT -	- II SOLAR ENERGY	9									
	idiation at the earth's surface – solar radiation measurements – estimation of average solar radiation ermal flat plate collectors - concentrating collectors – solar thermal applications - heating, coolin										

UNIT – III	W	'IND E	ENER(GΥ										9
Nature of the	wind –	power	in the	e wind	- facto	ors infl	uencin	g wind	l – win	d data	and en	ergy est	imatio	n - wind
speed monitor	speed monitoring - wind resource assessment - Betz limit - site selection - wind energy conversion devices -													
classification, characteristics, applications - offshore wind energy - Hybrid systems - safety and environmental														
aspects – wind energy potential and installation in India - Repowering concept. UNIT – IV BIO-ENERGY 9														
UNIT – IV														9
Biomass resources and their classification - Biomass conversion processes - Thermo chemical conversion - direct														
combustion - biomass gasification - pyrolysis and liquefaction - biochemical conversion - anaerobic digestion -														
types of biogas Plants - applications - alcohol production from biomass - bio diesel production - Urban waste to														
energy conversion - Biomass energy programme in India.														
UNIT – V														9
Ocean energy														
ocean wave en														
													nstruct	ion and
applications	plants – hydrogen production and storage - Fuel cell – principle of working - various types - construction and applications.– Energy scenario in India – Growth of energy sector and its planning in India.													
											Ί	'otal Per	iods:	45
Text Books:	~			~ .	_									
1. Sukhat														
2. Twide	II, J. W	. and w	eir, A	., Rene	wable	Energy	y Sourc	es,198	o, efn	Spon	Lta			
D.f	-1													
Reference Boo			1.1	_	. .	•	1 00	1 1	20	10	· D		. 11 ·	
1. Kishor												s, New L	Delhi	
2. Peter C												I I.	: 4 D	
												Univers		
Edn.	gi Gosv	vami, I	Kreith,	F and	Kreide	er, J. F	., Princ	iples (of Sola	r Engir	leering	, 2000, 1	vicGra	w-Hill, II
Lun.													Duo	gram
Course					Dr	aron	o Outco	mag						ecific
Outcomes					11	ugi ali	Oute	Jines						comes
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1	2	1	2	2	1	2	1	2	3	2	1	2	1
CO2	1	1	2	2	1	2	1	2	1	2	1	1	2	1
CO3	1	3	2	2	1	2	1	1	1	2	1	2	1	1
CO4	2	2	1	2	1	2	1	1	2	2	1	2	1	1
CO5	3	1	2	1	3	1	2	1	1	2	1	1	2	1

Γ	OME102	DESIGN OF EXPERIMENTS	L	Т	P	С
			3	0	0	3

OBJECTIVE

The course is aimed

- > To demonstrate knowledge and understanding of Taguchi's approach
- To demonstrate knowledge and understanding of Classical Design of Experiments (DOE) To develop skills to design and conduct experiments using DOE and Taguchi's approach
- To develop competency for analysing the data to determine the optimal process parameters that optimize the process.

Course CO1		
CO1	Outcomes (CO)	
	To understand the fundamental principles of Classical Design of Experiments	
CO2	To apply DOE for process understanding and optimisation	
CO3	To apply Taguchi based approach to evaluate quality	
CO4	To describe the Taguchi's approach to experimental design for process performance robusti	
CO5	To understand the Ranking method, Column effect method & Plotting method, Analysis of (ANOVA) in Factorial Experiments: YATE's algorithm	f variance
UNIT –	- I FUNDAMENTALS OF EXPERIMENTAL DESIGNS	9
Experim of desig	esis testing – single mean, two means, dependant/ correlated samples – confidence nentation – need, Conventional test strategies, Analysis of variance, F-test, terminology, basic gn, steps in experimentation – choice of sample size – Normal and half normal probability plo nd multiple linear regression, testing using Analysis of variance.	c principle
UNIT –	- II SINGLE FACTOR EXPERIMENTS	9
	etely Randomized Design- effect of coding the observations- model adequacy checking - es	-
model p Keuel's	parameters, residuals analysis- treatment comparison methods- Duncan's multiple range test test, Fisher's LSD test, Tukey's test- testing using contrasts- Randomized Block Design – La	, Newman
UNIT –	- Graeco Latin Square Design – Applications. - III FACTORIAL DESIGNS	9
	or sum of squares and Expected Mean Squares- 2K Design with two and three factors- Yate's A egression model- Randomized Block Factorial Design - Practical applications.	Algorithm
UNIT –	- IV SPECIAL EXPERIMENTAL DESIGNS	9
Complet Designs	ag and Confounding in 2K Designs- blocking in replicated design- 2K Factorial Design in tete and partial confounding- Confounding 2K Design in four blocks- Two level Fractionals- one-half fraction of 2K Design, design resolution, Construction of one-half fraction with high on, one-quarter fraction of 2K Design- introduction to response surface methods, central compo	al Factoria hest design
	- V TAGUCHI METHODS	
UNIT -		9
Method,	of experiments using Orthogonal Arrays, Data analysis from Orthogonal experiments- Response , ANOVA- attribute data analysis- Robust design- noise factors, Signal to noise ratios, Inner case studies	9 onse Graph
Design o Method,	of experiments using Orthogonal Arrays, Data analysis from Orthogonal experiments- Response , ANOVA- attribute data analysis- Robust design- noise factors, Signal to noise ratios, Inner	9 onse Graph r/outer OA
Design of Method,	of experiments using Orthogonal Arrays, Data analysis from Orthogonal experiments- Response ANOVA- attribute data analysis- Robust design- noise factors, Signal to noise ratios, Inner case studies Total Period	9 onse Graph r/outer OA
Design (Method, design- (Text Bo	of experiments using Orthogonal Arrays, Data analysis from Orthogonal experiments- Response ANOVA- attribute data analysis- Robust design- noise factors, Signal to noise ratios, Inner case studies Total Period	onse Graph r/outer OA s: 45
Design o Method, design- o Text Bo	of experiments using Orthogonal Arrays, Data analysis from Orthogonal experiments- Respondent ANOVA- attribute data analysis- Robust design- noise factors, Signal to noise ratios, Inner case studies Total Periods Total Periods Total Periods Total Periods 2. Krishnaiah K, and Shahabudeen P, Applied Design of Experiments and Taguchi Met India, 201	onse Grapi r/outer OA s: 45
Design of Method, design- of Text Bo Referen	of experiments using Orthogonal Arrays, Data analysis from Orthogonal experiments- Respondent ANOVA- attribute data analysis- Robust design- noise factors, Signal to noise ratios, Inner case studies Total Periods Total Periods Dooks: 1. Douglas C. Montgomery, "Design and Analysis of Experiments", John Wiley & sons, 20 2. Krishnaiah K, and Shahabudeen P, Applied Design of Experiments and Taguchi Met India, 201 mce Books:	onse Graph r/outer OA s: 45 012 hods, PHI
Design of Method, design- of Text Bo Referen 1.	of experiments using Orthogonal Arrays, Data analysis from Orthogonal experiments- Respondent ANOVA- attribute data analysis- Robust design- noise factors, Signal to noise ratios, Inner case studies Total Periods Total Periods Total Periods Total Periods 2. Krishnaiah K, and Shahabudeen P, Applied Design of Experiments and Taguchi Met India, 201	onse Graph r/outer OA s: 45 012 hods, PHI

Course Outcomes	Program Outcomes													Program Specific Outcomes		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2		
CO1	1	2	1	2	2	1	2	1	2	3	2	1	2	1		
CO2	1	1	2	2	1	2	1	2	1	2	1	1	2	1		
CO3	1	3	2	2	1	2	1	1	1	2	1	2	1	1		
CO4	2	2	1	2	1	2	1	1	2	2	1	2	1	1		
CO5	3	1	2	1	3	1	2	1	1	2	1	1	2	1		

OB	T104	BIOSENSORS	L	Τ	P	(
			3	0	0	(***
OBJEC						
	irse is aim		1			
\triangleright	understan	d protein based biosensors and their enzyme reactivity, stability and their app	plica	tion		
~	<u> </u>	(20)				
	Outcome		••.	. 1	•••	
CO1		dents will able to understand protein based biosensors and their enzyme reaction in protein based nano crystalline thin film processing	ivity,	stab	ility a	an
201		plication in protein based nano crystalline thin film processing	•	- ata	1	· L
CO2	food pro		•			
CO3		dents will able to understand fluorescence, UV-Vis and electrochemical	l app	olicat	ions	С
	biosenso	Drs				
CO4	The stur	dents will able to study about the fabrication of biosensors and its application	ation	as n	anoc	h
	analyzer					
CO5		erstand the Future direction in biosensor research				
UNIT –	- I	PROTEIN BASED BIOSENSORS				
Nano st	ructure fo	r enzyme stabilization - Single enzyme nano particles - Nanotubes micropor	us si	lica -	- Prof	te
based n	anocrystal	line Diamond thin film for processing				
	·	^ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~				
UNIT –	- II	DNA BASED BIOSENSOR				
Heavy	metal com	plexing with DNA and its determination water and food samples - DNA zym	10 bio	osens	sors	
UNIT -		ELECTRO CHEMICAL APPLICATION		-		Γ
		ensors - Flurorescence - Absorption - Electrochemical. Integration of various	techr	iaue	s - Fi	b
	osensors				5	-
UNIT -	- IV	FABRICATION OF BIOSENSORS				Γ
Technic	ues used f	for microfabrication - Microfabrication of electrodes - On chip analysis				
	<u>[</u>					
UNIT -	- V	BIOSENSORS IN RESEARCH				Γ
Future (direction in	n biosensor research - Designed protein pores-as components of biosensors -	Mol	ecula	r des	i
		by for cellular biosensing - Biosensors for drug discovery - Nanoscale biosen				
		Total 1			4	5
Text Bo	ooks:				<u>.</u>	-
		s: A Practical Approach, J. Cooper & C. Tass, Oxford University Press, 2004	1			
	Dioberne		1			-

Reference Books:

- Nanomaterials for Biosensors, Cs. Kumar, Willey VCH, 2007
 Smart Biosensor Technology, G.K. Knoff, A.S. Bassi, CRC Press, 2006.

Course Outcomes		Program Outcomes													
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	1	2	1	2	2	1	2	1	2	3	2	1	2	1	
CO2	1	1	2	2	1	2	1	2	1	2	1	1	2	1	
CO3	1	3	2	2	1	2	1	1	1	2	1	2	1	1	
CO4	2	2	1	2	1	2	1	1	2	2	1	2	1	1	
CO5	3	1	2	1	3	1	2	1	1	2	1	1	2	1	

TESTING OF MATERIALS OME106 L Т Р С

OBJECTIVE

The course is aimed

To understand the various destructive and non-destructive testing methods of materials and its industrial applications

Course Outcomes (CO)

Ability to use the different technique and know its applications and limitations CO1

CO₂ Identify suitable testing technique to inspect industrial component

CO3 To understand the Visual inspection, Liquid penetrant test

CO4 To understand the Differential scanning calorimetry

To understand the Thermomechanical and Dynamic mechanical analysis CO5

INTRODUCTION TO MATERIALS TESTING UNIT – I

Overview of materials, Classification of material testing, Purpose of testing, Selection of material, Development of testing, Testing organizations and its committee, Testing standards, Result Analysis, Advantages of testing.

UNIT – II **MECHANICAL TESTING**

Introduction to mechanical testing, Hardness test (Vickers, Brinell, Rockwell), Tensile test, Impact test (Izod, Charpy) - Principles, Techniques, Methods, Advantages and Limitations, Applications. Bend test, Shear test, Creep and Fatigue test - Principles, Techniques, Methods, Advantages and Limitations, Applications. 9

UNIT – III NON DESTRUCTIVE TESTING

Visual inspection, Liquid penetrant test, Magnetic particle test, Thermography test - Principles, Techniques, Advantages and Limitations, Applications. Radiographic test, Eddy current test, Ultrasonic test, Acoustic emission- Principles, Techniques, Methods, Advantages and Limitations, Applications.

UNIT – IV MATERIAL CHARACTERIZATION TESTING

Macroscopic and Microscopic observations, Optical and Electron microscopy (SEM and TEM) - Principles, Types, Advantages and Limitations, Applications. Diffraction techniques, Spectroscopic Techniques, Electrical and Magnetic Techniques- Principles, Types, Advantages and Limitations, Applications.

$\mathbf{UNIT} - \mathbf{V}$ **OTHER TESTING**

Thermal Testing: Differential scanning calorimetry, Differential thermal analysis. Thermo- mechanical and Dynamic mechanical analysis: Principles, Advantages, Applications. Chemical Testing: X-Ray Fluorescence, Elemental Analysis by Inductively Coupled Plasma-Optical Emission Spectroscopy and Plasma-Mass Spectrometry.

Total Periods:

3

0

3

9

9

9

9

0

Text B	ooks:														
1.	Baldev	^v Raj,	T.Jaya	kumar,	, M.Th	avasin	uthu'	'Praction	cal No	n-Dest	ructive	Testir	ng", Nar	osa Pu	blishing
	House,														
2.	•	, B. D.	., "Eler	nents c	of X-ra	y diffra	ction",	3rd E	dition,	Addisc	on-Wes	ley Co	mpany I	nc., Ne	w York,
2	2000.	1	(1 71	1 1	• •	—	63.4	. 1	1 4 11	1 2 - 1	D 11.1	C	D	200	7
3.	P. Field	d Foste	er, "Th	e Mech	nanical	Testin	g of M	etals ai	nd Allo	ys" /tl	n Editio	on, Coi	isens Pre	ess, 200)/.
Referen	Reference Books:														
	1. Metals Handbook: Mechanical testing, (Volume 8) ASM Handbook Committee, 9th Edition, American														moricon
1.	1. Metals Handbook: Mechanical testing, (Volume 8) ASM Handbook Committee, 9th Edition, American Society for Metals, 1978.														merican
2															cioty of
۷.	 ASM Metals Handbook, "Non-Destructive Evaluation and Quality Control", American Society of Metals, Metals Park, Ohio, USA. 														ciety of
3.							Metallo	ography	v", Voi	1 Nostr	and In	c. NJ, I	USA, 19	86.	
			,					01.	,			,	,		gram
Cou	rse					Pr	ogram	Outco	omes					Sp	ecific
Outco	omes						0							Out	comes
		1	2	3	4	5	6	7	8	9	10	11	12	1	2
CC)1	1	2	1	2	2	1	2	1	2	3	2	1	2	1
CC)2	1	1	2	2	1	2	1	2	1	2	1	1	2	1
CC)3	1	3	2	2	1	2	1	1	1	2	1	2	1	1
CC)4	2	2	1	2	1	2	1	1	2	2	1	2	1	1
CC)5	3	1	2	1	3	1	2	1	1	2	1	1	2	1

OBT105	INTRODUCTION TO NANOSCIENCE AND NANOTECHNOLOGY	L	Т	Р	С
		3	0	0	3

OBJECTIVE

The course is aimed to

Understand the principles of processing, manufacturing and characterization of nanomaterials and nanostructures.

Course	Outcomes (CO)	
CO1	Demonstrate the understanding of length scales concepts, nanostructures and nanotechnology	
CO2	Understand the different classes of nanomaterials.	
CO3	Identify the CVD, MOCVD	
CO4	Outline the applications of nanotechnology and	
CO5	develop an ability to critically evaluate the promise of a nanotechnology device.	
UNIT –	I BASICS OF NANOTECHNOLOGY	9
Introduc	ction - Time and length scale in structures -Definition of a Nano system -Dimensionality and si	ze
depende	ent phenomena -Surface to volume ratio -Fraction of surface atoms - Surface energy and surface stress	;-
surface of	defects-Effect of nanoscale on various properties - Structural, thermal, mechanical, magnetic, optical a	nd
electroni	ic properties.	

Classification based on dimensionality-Quantum Dots, Wells and Wires- Carbon based nano materials (buckyballs, nanotubes, graphene)- Metal based nanomaterials (nanogold, nanosilver and metal oxides) -Nanocomposites-Nanopolymers - Nano ceramics -Biological nanomaterials. 9

UNIT – III SYNTHESIS OF NANOMATERIALS

Chemical Methods: Metal Nanocrystals by Reduction -Sol - gel processing -Solvothermal Synthesis-Photochemical Synthesis - Chemical Vapor Deposition(CVD) - Metal Oxide - Chemical Vapor Deposition (MOCVD).Physical Methods:Ball Milling - Electrodeposition - Spray Pyrolysis - DC/RF Magnetron Sputtering - Molecular Beam Epitaxy (MBE).

UNIT – IV CHARACTERIZATION OF NANOSTRUCTURES

Introduction, structural characterization, X-ray diffraction (XRD-Powder/Single crystal), Small angle X-ray scattering (SAXS), Scanning Electron Microscopy (SEM) - Energy Dispersive X-ray analysis (EDAX)-Transmission Electron Microscope (TEM) - Scanning Tunneling Microscope (STM)-Atomic Force Microscopy (AFM), UV-vis spectroscopy (liquid and solid state) - Raman Spectroscopy -X-ray Photoelectron Spectroscopy (XPS) - Auger Electron spectroscopy (AES).

UNIT – V APPLICATIONS

Solar energy conversion and catalysis - Molecular electronics and printed electronics -Nanoelectronics -Polymers with a special architecture - Liquid crystalline systems - Applications in displays and other devices -Nanomaterials for data storage -Photonics, Plasmonics- Chemical and biosensors -Nanomedicine and Nanobiotechnology

> Total Periods: 45

9

9

Text Books:

- Nano Technology: Basic Science and Emerging Technologies, Mick Wilson, Kamali Kannargare., Geoff 1. Smith Overseas Press (2005)
- 2. A Textbook of Nanoscience and Nanotechnology, Pradeep T., Tata McGrawHill Education Pvt. Ltd., 2012.
- 3. Nanostructured Materials and Nanotechnology, Hari Singh Nalwa, Academic Press, 2002.
- 4. Introduction to Nanotechnology, Charles P.Poole, FrankJ.Owens, Wiley Interscience (2003)
- 5. Textbook of Nanoscience and Nanotechnology, B.S. Murty, P. Shankar, Baldev Raj, B BRath, James Murday, Springer Science & Business Media, 2013.

Reference Books:

- 1. Nanotechnology: A gentle introduction to the next Big idea, Mark A.Ratner, Daniel Ratner, Mark Ratne, Prentice Hall P7R:1st Edition (2002)
- 2. Fundamental properties of nanostructed materials Ed D. Fioran, G.Sberveglier, World Scientific 1994
- 3. Nanoscience: Nanotechnologies and Nanophysics, Dupas C., Houdy P., Lahmani M., Springer-Verlag Berlin Heidelberg, 2007

Course Outcomes				Pr	ogram	Outco	mes					Program Specific Outcomes		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1	2	1	2	2	1	2	1	2	3	2	1	2	1
CO2	1	1	2	2	1	2	1	2	1	2	1	1	2	1
CO3	1	3	2	2	1	2	1	1	1	2	1	2	1	1
CO4	2	2	1	2	1	2	1	1	2	2	1	2	1	1
CO5	3	1	2	1	3	1	2	1	1	2	1	1	2	1

AUDIT COURSES

AD1001 CONSTITUTION OF INDIA L 2 2 OBJECTIVES: • Teach history and philosophy of Indian Constitution. • Describe the premises informing the twin themes of liberty and freedom from a civil rights p • Summarize powers and functions of Indian government. • Explain emergency rule. • Explain structure and functions of local administration COURSE OUTCOMES Upon completion of the course, the students will be	T 0	P 0	C 0
OBJECTIVES: • Teach history and philosophy of Indian Constitution. • Describe the premises informing the twin themes of liberty and freedom from a civil rights p • Summarize powers and functions of Indian government. • Explain emergency rule. • Explain structure and functions of local administration			0
 Teach history and philosophy of Indian Constitution. Describe the premises informing the twin themes of liberty and freedom from a civil rights p Summarize powers and functions of Indian government. Explain emergency rule. Explain structure and functions of local administration 	perspec	ctive.	
 Describe the premises informing the twin themes of liberty and freedom from a civil rights p Summarize powers and functions of Indian government. Explain emergency rule. Explain structure and functions of local administration 	perspec	ctive.	
 Summarize powers and functions of Indian government. Explain emergency rule. Explain structure and functions of local administration COURSE OUTCOMES	berspec	cuve.	
 Explain emergency rule. Explain structure and functions of local administration COURSE OUTCOMES 			II.
Explain structure and functions of local administration COURSE OUTCOMES			l l
COURSE OUTCOMES			
Upon completion of the course, the students will be			
CO1 Able to understand history and philosophy of Indian Constitution.			
CO2 Able to understand the premises informing the twin themes of liberty and freedom from a civil rights perspective.			
CO3 Able to understand powers and functions of Indian government.			
CO4 Able to understand emergency rule.			
CO5 Able to understand structure and functions of local administration.			
UNIT I: INTRODUCTION			9
History of Making of the Indian Constitution-Drafting Committee- (Composition & Working) -Philo Indian Constitution-Preamble-Salient Features	osophy	7 of the	
UNIT II: CONTOURS OF CONSTITUTIONAL RIGHTS & DUTIES			9
Fundamental Rights-Right to Equality-Right to Freedom-Right against Exploitation Right to Freedom	m of R	Religior	1-
Cultural and Educational Rights-Right to Constitutional Remedies Directive Principles of State Police	cy-Fur	ıdamen	ital
Duties			
UNIT III: ORGANS OF GOVERNANCE	• 1		9
Parliament-Composition-Qualifications and Disqualifications-Powers and Functions-Executive Pr			ernor
Council of Ministers-Judiciary, Appointment and Transfer of Judges, Qualifications Powers and Fun	ictions		0
UNIT IV: EMERGENCY PROVISIONS Emergency Provisions - National Emergency, President Rule, Financial Emergency			9
UNIT V: LOCAL ADMINISTRATION	6 171		9
District's Administration head- Role and Importance-Municipalities- Introduction- Mayor and role of Representative-CEO of Municipal Corporation-Pachayati raj- Introduction- PRI- Zila Pachayat-Elec			and
their roles- CEO ZilaPachayat- Position and role-Block levelOrganizational Hierarchy (Different dep			
level- Role of Elected and Appointed officials-Importance of grass root democracy	our tille	ind) vi	nuge
	AL PE	ERIOD	S: 4
TEXT BOOKS:			
1. Basu D D, Introduction to the Constitution of India, Lexis Nexis, 2015.			
2. Busi S N, Ambedkar B R framing of Indian Constitution, 1st Edition, 2015.			
 Jain M P, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014. The Constitution of India (Bare Act), Government Publication, 1950 			
1. The Constitution of more (Bure Per), OUVernment Fublication, 1750	Prog	gram	ך 🛚
		cific	
Course Program Outcomes	Outc	omes	1 📕
Course Program Outcomes	-	comes 2	┤║
Course Program Outcomes Outcomes	Outc		-
Course Outcomes Program Outcomes 1 2 3 4 5 6 7 8 9 10 11 12	Outc 1		-
Course Outcomes Program Outcomes 1 2 3 4 5 6 7 8 9 10 11 12 CO1 - - - - - - 1 1 12	Outc 1 -		-
Course Outcomes Program Outcomes 1 2 3 4 5 6 7 8 9 10 11 12 CO1 - - - - - - 1 1 12 CO1 - - - - - - 1 - - 1 CO2 - - - - - - 1 - - 1	Outc 1 - -		-

AD1002					•	VALU	E EDI	UCAT	ION]	L	Г	Р	С
	1												2			0	0
OBJECTI																	
	velop kn		0		-												
	plain the						1 .										
	velop the								n								
	erpret so								11								
COURSE	-		-														
Upon con	pletion	of the	course,	the st	udents	will b	e										
CO1	Gain ki	nowled	lge of s	self-de	velopr	nent											
CO2	Learn t	he imp	ortanc	e of H	uman	values											
CO3	Develo	Develop the overall personality through value education															
CO4	Overcome the self destructive habits with value education																
CO5	Interpr	et socia	al emp	owerm	nent wi	th valu	ie educ	cation									
UNIT I:	IT I: INTRODUCTION TO VALUE EDUCATION 9																
Values and										ork et	hics, I	ndian v	rision of	hum	anism	n, M	oral
and non- m UNIT II:	oral valu		Standa PORT					Judgm	ents								9
mportance	of cultiv							on Sel	f_relia		onfide	nce					9
Concentrat						•							itv Patr	iotisr	n Lo	ve fo)r
ature, Dis			,							,	1 (4110			100101	., 20		-
UNIT III:	•	INF	FLUEN	NCE O	FVA	LUE I	EDUC	ATIO	N								9
Personality																	
Punctuality											ity of I	labour,	Univers	sal br	other	hood	l an
eligious to JNIT IV:	lerance,		INCA								ION						9
Aware of s	elf-destri											g natur	e Chara	cter a	nd		
Competenc		books	vs Blin	nd fait	h, Self	-manag	gemen	t and C	Good h	ealth,	Scienc						
UNIT V:			LUE F														9
Equality, N				, Role	e of Wo	omen,	All rel	igions	and sa	me me	ssage,	Mind y	our Mi	nd, Se	elf-co	ntrol	,
Honesty, S	uayıng e	errectiv	very										тот	ГАТ 1	PERI		z. /
REFEREN	CE:												101			UD	y. '
Chakrobort University	y , S.K.			Ethics	for org	ganizat	ions T	heory	and pr	actice"	', Oxfo	ord					
														P	rogra	m	
Co	urse					Pr	ogram	Outco	omes						pecifi		
Out	comes						-								itcom		
		1	2	3	4	5	6	7	8	9	10	11	12	1		2	
	201	-	_	_	-	_	-	1	1	-	-	-	1	1			1
								1	1	_	-	-	1	-		-	

1

1

1

1

1

1

-

-

-

-

-

-

CO3

CO4

CO5

-

-

-

-

-

-

-

-

-

-

-

-

1

-

-

-

-

-

-

-

-

1

1

1

-

-

-

-

-

-

AD1003	PEDAGOGY STUDIES	L	Т	P	C
	STODIES	2	0	0	0
OBJECT	IVES:				
	nderstand the methodology of pedagogy.				
	ompare pedagogical practices used by teachers in formal and informal classrooms		-	-	ntrie
	fer how can teacher education (curriculum and practicum) and the school curricul	um and	l guid	lance	
	aterialsbest support effective pedagogy.				
	ustrate the factors necessary for professional development.				
	entify the Research gaps in pedagogy.				
COURSE	OUTCOMES				
Upon con	pletion of the course, the students will be able to				
CO1	Understand the methodology of pedagogy				
CO2	Understand Pedagogical practices used by teachers in formal and informal classic countries.	cooms	in dev	velopi	ng
CO3	Find how can teacher education (curriculum and practicum) and the school curri guidancematerials best support effective pedagogy.	culum	and		
CO4	Know the factors necessary for professional development.				
CO5	Identify the Research gaps in pedagogy.				
UNIT I:	INTRODUCTION AND METHODOLOGY			ſ	9
	rationale, Policy background, Conceptual framework and terminology - Theorie	of of	rning	, ,	9
	n, Teacher education - Conceptual framework, Research questions - Overviewof n				
Searching		iethou	510 <u>5</u> 9	ana	
UNIT II:	THEMATIC OVERVIEW				9
Pedagogio	al practices are being used by teachers in formal and informal classrooms i	n deve	elopin	g cou	intrie
- Curriculu	n, Teacher education.				
UNIT III		RACT	ICES	5	9
	bgy for the in depth stage: quality assessment of included studies - How can teac				
	nand practicum) and the school curriculum and guidance materials best support effectively and the school curriculum and guidance materials best support effectively and the school curriculum and guidance materials best support effectively and the school curriculum and guidance materials best support effectively and the school curriculum and guidance materials best support effectively and the school curriculum and guidance materials best support effectively and the school curriculum and guidance materials best support effectively and the school curriculum and guidance materials best support effectively and the school curriculum and guidance materials best support effectively and the school curriculum and guidance materials best support effectively and the school curriculum and guidance materials best support effectively and the school curriculum and guidance materials best support effectively and the school curriculum and guidance materials best support effectively and the school curriculum and guidance materials best support effectively and the school curriculum and guidance materials best support effectively and the school curriculum and guidance materials best support effectively and the school curriculum and guidance materials best support effectively and the school curriculum and guidance materials best support effectively and the school curriculum and guidance materials best support effectively and the school curriculum and guidance materials best support effectively and the school curriculum and guidance materials best support effectively and the school curriculum and guidance materials best support effectively and the school curriculum and guidance materials best support effectively and the school curriculum and guidance materials best support effectively and the school curriculum and guidance materials best support effectively and the school curriculum and guidance materials best support effectively and the school curriculum and guidance materials best support effectively and the school curiculum and gui				? -
Theory of					
0	and nature of the body of evidence for effective pedagogical practices - Pedagog	gic theo	ory an	ıd	
pedagogic					
UNIT IV	s - Teachers' attitudes and beliefs and Pedagogic strategies. PROFESSIONAL DEVELOPMENT				9
	al development: alignment with classroom practices and follow up support - Peer	rsunno	rt - Si	upport	
	acher and the community - Curriculum and assessment – Barriers to learning: lim	· ·		. .	
class sizes		neure	50410	es una	i iui g
UNIT V:	RESEARCH GAPS AND FUTURE DIRECTIONS				9
	lesign – Contexts – Pedagogy - Teacher education - Curriculum and assessment -I	Dissem	inatio	n and	
				opc	
research impact.					1.5
research		TAL I	'ERI	ODS:	45

Ackers J, Hardman F (2001) Classroom interaction in Kenyan primary schools, Compare, 31 (2): 245-261.
 Agrawal M (2004) Curricular reform in schools: The importance of evaluation, Journal of Curriculum Studies, 36(3): 361-379.

3. Akyeampong K (2003) Teacher training in Ghana - does it count? Multi-site teacher education research project (MUSTER) country report 1. London: DFID.

4. Akyeampong K, Lussier K, Pryor J, Westbrook J (2013) Improving teaching and learning of basic maths and readingin Africa: Does teacher preparation count? International Journal Educational Development, 33 (3): 272–282. 5. Alexander RJ (2001) Culture and pedagogy: International comparisons in primary education. Oxford and Boston:Blackwell.

Course Outcomes	comes													
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	-	-	-	-	-	-	-	-	-	-	-	1	-	-
CO2	-	-	-	-	-	-	-	-	-	-	-	1	-	-
CO3	-	-	-	-	-	-	-	-	-	-	-	1	-	-
CO4	-	-	-	-	-	-	-	-	-	-	-	1	-	-
CO5	-	-	-	-	-	-	-	-	-	-	-	1	-	-

AD1004		STRESS MANAGEMENT BY YOGA	L	Т	P	С							
			2	0	0	0							
OBJECTI													
	.	lthy mind in a healthy body thus improving social health also improve et	fficiency	/									
		and Don't's in life through Yam											
		Do's and Don't's in life through Niyam											
		ealthy mind and body through Yog Asans											
		hing techniques through Pranayam											
COURSE													
Upon com	pletion o	f the course, the students will be able to											
CO1	Develop	healthy mind in a healthy body thus improving social health also impro	ve effici	ency									
CO2	Learn D	o's and Don't's in life through Yam											
CO3	Learn D	earn Do's and Don't's in life through Niyam											
CO4	Develop	Develop a healthy mind and body through Yog Asans											
CO5	Learn b	reathing techniques through Pranayam											
UNIT I:		INTRODUCTION TO YOGA			9)							
Definitions	of Eight	parts of yog.(Ashtanga)			•								
UNIT II:		YAM			Ģ)							
Do's and De	on't's in	life.Shaucha, santosh, tapa, swadhyay, ishwarpranidhan											
UNIT III:		NIYAM			9)							
Do's and De	on't's in	life. Ahinsa, satya, astheya, bramhacharya and aparigraha											
UNIT IV:		ASAN			Ģ)							
	g poses ai	nd their benefits for mind & body											
UNIT V:		PRANAYAM			9)							
Regularizat	ion of bre	eathing techniques and its effects-Types of pranayam			_								
	~~~~~	Т	OTAL	PERI	ODS:	45							
REFEREN													
		nquering the Internal Nature" by Swami Vivekananda, Advaita	Ashran	na (Pu	blicat	ion							
Departme													
2.10 gic A	sanas 10f	Group Tarining-Part-I": Janardan Swami Yogabhyasi Mandal, Nagpur											

	Course Outcom						Pro	ogram	Outco	omes						Spe	gram cific comes	
			1	2	3	4	5	6	7	8	9	10	11	12	2	1	2	
	CO1		-	-	-	-	-	-	1	1	-	-	-	1		-	-	
	CO2		-	-	-	-	-	-	1	1	-	-	-	1		-	-	
	CO3		-	-	-	-	-	-	1	1	-	-	-	1		-	-	_
	CO4		-	-	-	-	-	-	1	1	-	-	-	1		-	-	
	CO5		-	-	-	-	-	-	1	1	-	-	-	1		-	-	
AD10	05			PER	SONA			ELOP				H LIF	E		L	Т	P	(
						ENL	IGHI	ENM		KILL	ر. ۲				2	0	0	0
OBJE	<b>ECTIVES:</b>															v	v	0
COL	Develop Rewrite Reframe J <b>RSE OU</b>	the re a per	espons rson w	sibilitie	es			o achie	ve hap	py goa								
Upor	n completio	on of	the co	ourse, f	the stu	dents v	vill be											
CO	<b>01</b> To	deve	elop ba	asic pe	rsonali	ty skil	ls holis	stically										
CO	<b>02</b> To	deve	lop de	eep per	sonali	ty skill	s holis	tically	to ach	ieve ha	appy g	oals						
CO	<b>03</b> To	rewr	ite the	e respo	nsibili	ties												
CO	<b>04</b> To	refra	ime a j	person	with s	table r	nind, p	leasing	g perso	onality	and de	etermin	ation					
CO	<b>05</b> To	awał	ken wi	isdom	in stuc	ents												
UNIT								FIC D								Ι		9
	s- 19,20,21	,22 (																0
UNIT		) (dar	1					FIC D	EVEL	OPMI	ENTC	)F PEI	KSON	ALII	<b>Y</b> -	11		9
UNIT	s- 52,53,59 ' III•	(uoi					RNAN	,										9
	ad Bhagwa	ad Ge							pter 3-	Verses	s 13, 2	1, 27, 3	35 Cha	pter6	-Ver	rses 5,		-
	oter 18-Ver	rses 4				יססס	71610	NC										9
UNIT Staten 16,17,	nents of ba	sic ki					/ <b>ISIO</b> gwad C		Chapte	er2-Vei	rses 56	5, 62, 6	8 Chaj	oter12	2 -Ve	erses 1		-
			LO	CAL A	DMI	NISTR	RATIO	N										9
	er2-Verses	17, 0							-Verse	s 18, 3	38,39 (	Chapter	:18 –V	erses	37,3	38,63	`	
			-									_		ΤΟ	TAL	PER	IODS	5:45
1. Gop	E <b>RENCES</b> pinath,Rasl ami Swaruj	htriya										•	-	<b>.</b>			ni,201	0

	Course Outcomes					Pro	ogram	Outco	omes					Spe	gram cific comes
		1	2	3	4	5	6	7	8	9	10	11	12	1	2
	CO1	-	-	-	-	-	-	-	-	1	-	-	1	-	-
	CO2	-	-	-	-	-	-	-	-	1	-	-	1	-	-
	CO3	-	-	-	-	-	-	-	-	1	-	-	1	-	-
	CO4	-	-	-	-	-	-	-	-	1	-	-	1	-	-
	CO5	-	_	-	-	-	-	-	-	1	-	-	1	-	-
		<u> </u>	I	<u> </u>	<u> </u>	<u> </u>									
AD1	1006				UNN	AT B	HAR	AT AI	BHIY	1	I		I 1 2		P 0

- To engage the students in understanding rural realities
- To identify and select existing innovative technologies, enable customization of technologies, or devise implementation method for innovative solutions, as per the local needs.
- To leverage the knowledge base of the institutions to devise processes for effective implementation of various government programmes
- To understand causes for rural distress and poverty and explore solutions for the same
- To apply classroom knowledge of courses to field realities and thereby improve quality of learning

# **COURSE OUTCOMES**

Upon completion of the course, the students will be able to

CO1	Able to understand of rural life, culture and social realities
CO2	Able to understand the concept of measurement by comparison or balance of parameters.
CO3	Able to develop a sense of empathy and bonds of mutuality with local community
CO4	Able to appreciate significant contributions of local communities to Indian society and economy
CO5	Learned to value the local knowledge and wisdom of the community

UNIT I: **OUALITY OF RURAL LIFE IN VILLAGES AND UNNAT BHARAT ABHIYAN** Introduction to Unnat Bharat Abhiyan - concept, scope and objectives, rural life, rural society, cast and gender

relations, rural values with respect to community, nature and resources, elaboration of "Soul of India lies in villages" - (Gandhi Ji), Rural infrastructure, problems in rural area.

9

Assignment: Prepare a map (Physical, visual and digital) of the village you visited and write an essay about interfamily relation in that village. 9

#### **RURAL ECONOMY AND LIVELIHOOD UNIT II:**

Agriculture, farming, land ownership pattern, water management, animal husbandry, non-farm livelihoods and artisans, rural entrepreneurs, rural market.

Assignment: Describe your analysis of rural household economy, it's challenges and possible pathways to address them. Group discussion in class- (4) Field visit 3. 9

### **UNIT III: RURAL INSTITUTIONS**

History of Rural Development, Traditional rural organizations, Self Help Groups, Gram Swaraj and 3- Tier Panchayat Raj Institutions (Gram Sabha, Gram Panchayat, Standing Committee), local civil society, local administration. Introduction to Constitution, Constitutional Amendments in Panchayati Raj – Fundamental Rights and Directive Principles.

Assignment: Panchayati Raj institutions in villages? What would you suggest to improve their effectiveness? Present a case study (written or audio-visual). Field Visit -4. 9

#### **RURAL DEVELOPMENT PROGRAMMES UNIT IV:**

National programmes - Sarva Shiksha Abhiyan, Beti Bachao, Beti Padhao, Ayushman Bharat, Swatchh Bharat, PM Awass Yojana, Skill India, Gram Panchayat Decentralised Planning, NRLM, MNREGA, etc.

Written Assignment: Describe the benefits received and challenges faced in the delivery of one of these programmes in the rural community, gve suggestions about improving implementation of the programme for the rural poor 9

#### **UNIT V: FIELD WORK**

Each student selects one programme for field visit Field based practical activities:

• Interaction with SHG women members, and study of their functions and challenges; planning for their skill building and livelihood activities

• Visit MGNREGS project sites, interact with beneficiaries and interview functionaries at the work site

• Field visit to Swachh Bharat project sites, conduct analysis and initiate problem solving measures

• Conduct Mission Antyodaya surveys to support under Gram Panchayat Development Plan(GPDP)

• Interactive community exercise with local leaders, panchayat functionaries, grass-root officials and local institutions regarding village development plan preparation and resource mobilization

- Visit Rural Schools I mid-day meal centres, study Academic and infrastructural resources and gaps
- Participate in Gram Sabha meetings, and study community participation

• Associate with Social audit exercises at the Gram Panchayat level, and interact with programme beneficiaries

• Attend Parent Teacher Association meetings, and interview school drop outs

• Visit local Anganwadi Centre and observe the services being provided

• Visit local NGOs, civil society organisations and interact with their staff and beneficiaries.

• Organize awareness programmes, health camps, Disability camps and cleanliness camps o Conduct soil health test,

• Raise understanding of people's impacts of climate change, building up community's disaster preparedness

• Organise orientation programmes for farmers regarding organic cultivation, rational use of irrigation and fertilizers and promotion of traditional species of crops and plants

• Formation of committees for common property resource management, village pond maintenance and fishing .

# TOTAL PERIODS: 45

### **REFERENCES:**

- 1. Singh, Katar, Rural Development Principles, Policies and Management, Sage Publications, New Delhi, 2015
- 2. A Hand book on Village Panchayat Administration, Rajiv Gandhi Chair for Panchayati Raj Studies, 2002
- 3. United Nations, Sustainable Development Goals, 2015 un.org/sdgs
- 4. M.P.Boraian, Best Practices in Rural Development, Shanlax Publishers
- 5. Unnat Bharat Abhiyan Website : www.unnatbharatabhiyan.gov.in

AD1007	ESSENCE OF INDIAN KNOWLEDGE TRADITIONLT	Р	(
		0	(
OBJECTIVE			
	ll introduce the students to		
	knowledge about Indian Culture		
	Indian Languages and Literature religion and philosophy and the fine arts in India		
	re the Science and Scientists of Ancient, Medieval and Modern India stand education systems in India		
	· · · · · · · · · · · · · · · · · · ·		
COURSE O	UTCOMES		
Upon comple	tion of the course, the students will be able to		
CO1	Understand philosophy of Indian culture.		
CO2	Distinguish the Indian languages and literature.		
CO3	Learn the philosophy of ancient, medieval and modern India.		
CO4	Acquire the information about the fine arts in India.		
CO5	Know the contribution of scientists of different eras.		
CO6	Understand education systems in India		
UNIT I:	INTRODUCTION TO CULTURE		9
	vation, culture and heritage, general characteristics of culture, importance of culture in hum	n litera	atu
	, Ancient India, Medieval India, Modern India		
UNIT II:	INDIAN LANGUAGES AND LITERATURE		9
	ges and Literature – I: Languages and Literature of South India, – Indian Languagesand Li Indian Languages & Literature	erature	;
UNIT III:	RELIGION AND PHILOSOPHY		9
Major religion	s practiced in India and Understanding their Philosophy – religious movements in Modern ements only)	India	
UNIT IV:	FINE ARTS IN INDIA (ART, TECHNOLOGY& ENGINEERING)		9
	g, Indian handicrafts, Music, divisions of Indian classic music, modern Indian music, Danc	e and	
Drama,			
	cture (ancient, medieval and modern), Science and Technology in India, development of		
UNIT V:	ent, medieval and modern India EDUCATION SYSTEM IN INDIA		9
	ncient, medieval and modern India, aims of education, subjects, languages, Scienceand Sci		
	Science and Scientists of Medieval India, Scientists of Modern India		л
	TOTAL PE	RIODS	: 4

- 1. Kapil Kapoor, "Text and Interpretation: The India Tradition", ISBN: 81246033375, 2005
- 2. "Science in Samskrit", Samskrita Bharti Publisher, ISBN 13: 978-8187276333, 2007
- 3. NCERT, "Position paper on Arts, Music, Dance and Theatre", ISBN 81-7450 494-X, 200
- 4. Narain, "Examinations in ancient India", Arya Book Depot, 1993
- 5. Satya Prakash, "Founders of Sciences in Ancient India", Vijay Kumar Publisher, 1989

6. M. Hiriyanna, "Essentials of Indian Philosophy", Motilal Banarsidass Publishers, ISBN 13: 978-8120810990, 2014

Course Outcomes					Pro	ogram	Outco	omes					Spe	gram ecific comes	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	-	-	-	-	-	-	-	-	1	-	-	1	-	-	
CO2	-	-	-	-	-	-	-	-	1	-	-	1	-	-	
CO3	-	-	-	-	-	-	-	-	1	-	-	1	-	-	
CO4	-	-	-	-	-	-	-	-	1	-	-	1	-	-	
CO5	-	-	-	-	-	-	-	-	1	-	-	1	-	-	

AD1008	SANGA TAMIL LITERATURE APPRECIATIONLT	P	(
		0	(
OBJECTIVES			
	ng objective of this course is to make the students an appreciation for: duction to Sanga Tamil Literature.		
2. 'Aga			
	ure.3. 'Attruppadai' in SangaTamil Literature.		
	naanuru' in SangaTamil		
Literat	ire. 5. 'Pathitrupaththu' in		
Sangal	amil Literature.		
COURSE OU	UTCOMES		
Upon complet	ion of the course, the students will be able to		
CO1	Appreciate and apply the messages in Sanga Tamil Literature in their life.		
CO2	Differentiate 'Agathinai' and 'Purathinai' in their personal and societal life.		
CO3	Appreciate and apply the messages in' Attruppadai' in their personal and societal life.		
CO4	Appreciate and apply the messages in' Puranaanuru' in their personal and societal life.		
CO5	Appreciate and apply the messages in' Pathitrupaththu' in their personal and societal life.		
UNIT I:	SANGA TAMIL LITERATURE – AN INTRODUCTION	1	9
	Tamil Sangam-History of Tamil Three Sangams-Introduction to Tamil Sangam Litera		
	s in Tamil Sangam Literature- Tamil Sangam Literature's Grammar Tamil Sangam Literatu	re's	
parables.			
UNIT II:	'AGATHINAI'AND'PURATHINAI'		9
I holkappiyar´s Agathinai–	Meaningful Verses-Three literature materials-Agathinai's message- History of Culture from	n	
	sification–Mesaage to Society from Purathinai.		
UNIT III:	'ATTRUPPADAI'.		9
	rature–Attruppadaiin'Puranaanuru'-Attruppadaiin'Pathitrupaththu'-Attruppadaiin 'Paththup		
UNIT IV:	'PURANAANURU'	-	9
	Good Administration, Ruler and Subjects–Emotion & its Effect in Puranaanuru.		
UNIT V:	'PATHITRUPATHTHU'		9
Pathitrupaththu	in'Ettuthogai'-Pathitrupaththu'sParables-Tamildynasty:Valor, Administration, Charity in		
Pathitrupaththu	- Mesaage to Society from Pathitrupaththu.		
anna apanna	TOTAL PERI	ODG.	• 2

1. Sivaraja Pillai, The Chronology of the Early Tamils, Sagwan Press, 2018.

HankHeifetz andGeorgeL. Hart, The Purananuru,Penguin Books,2002.
 Kamil Zvelebil, The Smile of Murugan: OnTamil Literature of South India, Brill Academic Pub,1997.

4. GeorgeL. Hart, Poetsof the Tamil Anthologies: AncientPoemsofLove and War, Princeton University Press, 2015.

5. XavierS. Thani Nayagam, Landscape and poetry: a study of nature in classical Tamil poetry, Asia Pub. House, 1967.

Course Outcomes					Pr	ogram	Outco	omes					Spe	gram ecific comes
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	-	-	-	-	-	-	-	-	-	1	-	1	-	-
CO2	-	-	-	-	-	-	-	-	-	1	-	1	-	-
CO3	-	-	-	-	-	-	-	-	-	1	-	1	-	-
CO4	-	-	-	-	-	-	-	-	-	1	-	1	-	-
CO5	-	-	-	-	-	-	-	-	-	1	-	1	-	-